解特殊不定方程:毕达哥拉斯三元组

毕达哥拉斯三元组:x*x+y*y=z*z

定理:正整数x,y,z构成一个本原毕达哥拉斯三元组且y为偶数  当且仅当存在互素的正整数m,n(m>n) 

其中m为奇数n为偶数或者m为偶数n为奇数(奇偶性不同)并且满足:

x=m*m-n*n

y=2*m*n

z=m*m+n*n


poj 1305 

Fermat vs. Pythagoras
Time Limit: 2000MS Memory Limit: 10000K
Total Submissions: 1381 Accepted: 800

Description

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level. 
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2. 
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples). 

Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file

Output

For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line.

Sample Input

10
25
100

Sample Output

1 4
4 9
16 27

按照毕达哥拉斯三元组的要求构造出x,y,z 然后枚举可能的值

本原毕达哥拉斯三元组的个数 是根据m,n的值确定的

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 1000010
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int Read()
{
    char ch;
    int a = 0;
    while((ch = getchar()) == ' ' | ch == '\n');
    a += ch - '0';
    while((ch = getchar()) != ' ' && ch != '\n')
    {
        a *= 10;
        a += ch - '0';
    }
    return a;
}

void Print(int a)    //输出外挂
{
     if(a>9)
         Print(a/10);
     putchar(a%10+'0');
}
int gcd(int a,int b)
{
    if(b==0)  return a;
    return gcd(b,a%b);
}
bool flag[MAXN];

int main()
{
    //fread;
    int p;
    while(scanf("%d",&p)!=EOF)
    {
        int num1=0,num2=0;//本原个数  涉及到数的个数
        MEM(flag,0);
        int m,n,x,y,z;
        int tmp=sqrt((double)p);
        for(n=1;n<=tmp;n++)
        {
            for(m=n+1;m<=tmp;m++)
            {
                if(m*m+n*n>p)
                    break;
                if(n%2!=m%2)
                {
                    if(gcd(m,n)==1)
                    {
                        x=m*m-n*n;
                        y=2*m*n;
                        z=m*m+n*n;
                        num1++;
                        for(int i=1;;i++)
                        {
                            if(i*z>p)
                                break;
                            flag[i*x]=1;
                            flag[i*y]=1;
                            flag[i*z]=1;
                        }
                    }
                }
            }
        }
        for(int i=1;i<=p;i++)
            if(!flag[i])
                num2++;
        printf("%d %d\n",num1,num2);
    }
    return 0;
}


fzu 1669 

 Problem 1669 Right-angled Triangle

Accept: 67    Submit: 135
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted △ABC.
Triangles can also be classified according to their internal angles, described below using degrees of arc:
  • A right triangle (or right-angled triangle, formerly called a rectangled triangle) has one 90° internal angle (a right angle). The side opposite to the right angle is the hypotenuse; it is the longest side in the right triangle. The other two sides are the legs or catheti (singular: cathetus) of the triangle. Right triangles conform to the Pythagorean Theorem, wherein the sum of the squares of the two legs is equal to the square of the hypotenuse, i.e., a^2 + b^2 = c^2, where a and b are the legs and c is the hypotenuse.
  • An oblique triangle has no internal angle equal to 90°.
  • An obtuse triangle is an oblique triangle with one internal angle larger than 90° (an obtuse angle).
  • An acute triangle is an oblique triangle with internal angles all smaller than 90° (three acute angles). An equilateral triangle is an acute triangle, but not all acute triangles are equilateral triangles.
What we consider here is very simple. Give you the length of L, you should calculate there are how many right-angled triangles such that a + b + c ≤ L where a and b are the legs and c is the hypotenuse. You should note that the three numbers a, b and c are all integers.

 Input

There are multiply test cases. For each test case, the first line is an integer L(12≤L≤2000000), indicating the length of L.

 Output

For each test case, output the number of right-angled triangles such that a + b + c ≤ L where a and b are the legs and c is the hypotenuse.

 Sample Input

1240

 Sample Output

15

 Hint

There are five right-angled triangles where a + b + c ≤ 40. That are one right-angled triangle where a = 3, b = 4 and c = 5; one right-angled triangle where a = 6, b = 8 and c = 10; one right-angled triangle where a = 5, b = 12 and c = 13; one right-angled triangle where a = 9, b = 12 and c = 15; one right-angled triangle where a = 8, b = 15 and c = 17.



c*c=a*a+b*b  同样是满足毕达哥拉斯三元组的

根据满足的情况 在将三个值相加 确保满足大小要求

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 10010
#define MAXM 10000010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int Read()
{
    char ch;
    int a = 0;
    while((ch = getchar()) == ' ' | ch == '\n');
    a += ch - '0';
    while((ch = getchar()) != ' ' && ch != '\n')
    {
        a *= 10;
        a += ch - '0';
    }
    return a;
}

void Print(int a)    //输出外挂
{
     if(a>9)
         Print(a/10);
     putchar(a%10+'0');
}
int flag[MAXN];
int gcd(int a,int b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}

int main()
{
    //fread;
    int l;
    while(scanf("%d",&l)!=EOF)
    {
        int num=0;
        int tmp,m,n,x,y,z;
        tmp=sqrt((double)l);
        MEM(flag,0);
        for(n=1;n<=tmp;n++)
        {
            for(m=n+1;m<=tmp;m++)
            {
                if(2*m*m+2*m*n>l)//x+y+z>l
                    break;
                if(n%2!=m%2)
                {
                    if(gcd(m,n)==1)
                    {
                        x=m*m-n*n;
                        y=2*n*m;
                        z=m*m+n*n;
                        for(int i=1;;i++)
                        {
                            if(i*(x+y+z)>l)
                                break;
                            num++;
                        }
                    }
                }
            }
        }
        printf("%d\n",num);
    }
    return 0;
}





  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值