HIT OJ 2255 Not Fibonacci (矩阵快速幂)

该博客介绍了HIT OJ上的2255题,题目涉及一个变形的斐波那契数列,要求求解指定范围内的数列元素之和。博主利用矩阵快速幂的方法,通过建立3x3矩阵进行计算,最终得出从第s项到第e项的和。文中提供了详细的矩阵运算推导及代码实现。
摘要由CSDN通过智能技术生成

传送门:HIT 2255

题意:给一个数列,变形的斐波那契数列.f[0]=a,f[1]=b,n>=2,f[n]=p*f[n-1]+q*f[n-2]求第s项到第e项的和。

题解:矩阵快速幂。我推出的矩阵是3×3的:1  p  q      s[1]       s[2]

                                                                       0  p  q  ×  f[1]  =  f[n]          

                                                                       0  1  0      f[0]        f[n-1]

           (数列s为数列f的前n项和)

           矩阵的n次幂对应s[n+1]。最后,s[e-1]-s[s-2]即为结果(两个s代表的意义不同)

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <map>
using namespace std;
const int MAX=3;
const int MOD=10000000;
typedef struct
{
    long long m[MAX][MAX];
    void set()
    {
        memset(m,0,sizeof(m));
    }
}Matrix;
long long pp,qq,aa,bb,ss,ee,ans;
Matrix T1={1,0,0,0,0,0,0,0,1};
Matrix T2={1,0,0,0,1,0,0,0,1};
Matrix matrixmul(Matrix a,Matrix b)
{
    int i,j,k;
    Matrix c;
    for(i=0;i<MAX;i++)
        for(j=0;j<MAX;j++)
    {
        c.m[i][j]=0;
        for(k=0;k<MAX;k++)
            c.m[i][j]+=(a.m[i][k]*b.m[k][j])%MOD;
        c.m[i][j]%=MOD;
    }
    return c;
}
Matrix quickpow(int n)
{
    Matrix m=T1,b=T2;
    while(n>=1)
    {
        if(n&1)
            b=matrixmul(b,m);
        n=n>>1;
        m=matrixmul(m,m);
    }
    return b;
}
void inti(int p,int q)//初始化矩阵
{
    T1.set();
    T1.m[0][0]=1;
    T1.m[0][1]=p;
    T1.m[0][2]=q;
    T1.m[1][1]=p;
    T1.m[1][2]=q;
    T1.m[2][1]=1;
}
int main()
{
    Matrix S1,S2;
    long long k1,k2;
    int t;
    cin>>t;
    while(t--)
    {
        cin>>aa>>bb>>pp>>qq>>ss>>ee;
        inti(pp,qq);
        if(ee>=2)
            S1=quickpow(ee-1);
        if(ss>2)
            S2=quickpow(ss-2);
        if(ss==0) k2=0;
        else if(ss==1) k2=aa;
        else if(ss==2) k2=bb+aa;
        else k2=((S2.m[0][0]*((aa+bb)%MOD))%MOD+(S2.m[0][1]*bb)%MOD+(S2.m[0][2]*aa)%MOD)%MOD;
        if(ee==0) k1=aa;
        else if(ee==1) k1=bb+aa;
        else k1=((S1.m[0][0]*((aa+bb)%MOD))%MOD+(S1.m[0][1]*bb)%MOD+(S1.m[0][2]*aa)%MOD)%MOD;
        ans=k1-k2;
        if(ans<0) ans+=MOD;
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值