RSA数分解

RSA数是加密技术中的核心,由两个素数相乘得出。分解RSA数的难度在于指数级的时间复杂度,目前最远能分解到768位。尽管存在一些优化策略如素数判定,但面对1024位RSA数,仍需要超级计算机进行长时间计算。
摘要由CSDN通过智能技术生成

问题描述

RSA数是两个素数的乘积,例如 156287 = 373×419。问题是已知一个RSA数,如何在可接受的时间内将其分解为两个素数。

问题分析

这个问题是RSA非对称加密算法的核心。非对称的意思就是将一个大数分解质因数的时间远大于将两个素数乘起来的时间。
该问题的难点是指数增长的时间复杂度。即随着两个素数位数的增长,计算量呈指数增长。这被认为是不可解的。

问题求解

设RSA数为n,朴素的方法是穷举,即使用小于 n 的每一个数去除n,看看能否除尽。
另一个可能的改进是仅用小于<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值