写在前面
第二次ak,不容易,虽然还是相对较水的一次。
5380. 数组中的字符串匹配
给你一个字符串数组 words ,数组中的每个字符串都可以看作是一个单词。请你按 任意 顺序返回 words 中是其他单词的子字符串的所有单词。
如果你可以删除 words[j] 最左侧和/或最右侧的若干字符得到 word[i] ,那么字符串 words[i] 就是 words[j] 的一个子字符串。
示例 1:
输入:words = [“mass”,“as”,“hero”,“superhero”]
输出:[“as”,“hero”]
解释:“as” 是 “mass” 的子字符串,“hero” 是 “superhero” 的子字符串。
[“hero”,“as”] 也是有效的答案。
提示:
1 <= words.length <= 100
1 <= words[i].length <= 30
words[i] 仅包含小写英文字母。
题目数据 保证 每个 words[i] 都是独一无二的。
解法:
暴力就行了,数据量很小。
代码:
class Solution {
public:
vector<string> stringMatching(vector<string>& a) {
vector<string> res;
if(a.empty()) return res;
int l = a.size();
for(int i=0; i<l; ++i){
for(int j=0; j<l; ++j){
if(i!=j && a[j].size()>a[i].size()){
auto pos = a[j].find(a[i]);
if(pos!=a[j].npos){
res.push_back(a[i]);
break;
}
}
}
}
return res;
}
};
- 查询带键的排列
给你一个待查数组 queries ,数组中的元素为 1 到 m 之间的正整数。 请你根据以下规则处理所有待查项 queries[i](从 i=0 到 i=queries.length-1):
- 一开始,排列 P=[1,2,3,…,m]。
- 对于当前的 i ,请你找出待查项 queries[i] 在排列 P 中的位置(下标从 0 开始),然后将其从原位置移动到排列 P 的起始位置(即下标为 0 处)。注意, queries[i] 在 P 中的位置就是 queries[i] 的查询结果。
请你以数组形式返回待查数组 queries 的查询结果。
示例 1:
输入:queries = [3,1,2,1], m = 5
输出:[2,1,2,1]
解释:待查数组 queries 处理如下:
对于 i=0: queries[i]=3, P=[1,2,3,4,5], 3 在 P 中的位置是 2,接着我们把 3 移动到 P 的起始位置,得到 P=[3,1,2,4,5] 。
对于 i=1: queries[i]=1, P=[3,1,2,4,5], 1 在 P 中的位置是 1,接着我们把 1 移动到 P 的起始位置,得到 P=[1,3,2,4,5] 。
对于 i=2: queries[i]=2, P=[1,3,2,4,5], 2 在 P 中的位置是 2,接着我们把 2 移动到 P 的起始位置,得到 P=[2,1,3,4,5] 。
对于 i=3: queries[i]=1, P=[2,1,3,4,5], 1 在 P 中的位置是 1,接着我们把 1 移动到 P 的起始位置,得到 P=[1,2,3,4,5] 。
因此,返回的结果数组为 [2,1,2,1] 。
提示:
1 <= m <= 10^3
1 <= queries.length <= m
1 <= queries[i] <= m
解法:
从m的范围来看,n2的算法就可以通过了,模拟这个过程就是n2。
代码:
class Solution {
public:
vector<int> processQueries(vector<int>& a, int m) {
vector<int> p(m+1,0);
vector<int> res;
if(a.empty()) return res;
for(int i=0; i<m; ++i){
p[i] = i+1;
}
for(int k=0; k<a.size(); ++k){
int pos;
for(pos = 0; pos<m; ++pos){
if(p[pos]==a[k]){
break;
}
}
res.push_back(pos);
int tmp = p[pos];
for(int i=pos; i>=1; --i){
p[i] = p[i-1];
}
p[0] = tmp;
}
return res;
}
};
编程最忌讳的其实就是大量的数组移动操作,那么为了减少这种操作,我们可以用map记录数值对应的索引位置,然后修改索引就行了。
代码:
class Solution {
public:
vector<int> processQueries(vector<int>& queries, int m) {
map<int,int> mp;
for(int i=0; i<m; ++i){
mp[i+1] = i;
}
vector<int> res;
for(int i=0; i<queries.size(); ++i){
int k = queries[i];
res.push_back(mp[k]);
for(auto& p : mp){
if(p.second>=mp[k])
continue;
++p.second;
}
mp[k] = 0;
}
return res;
}
};
- HTML 实体解析器
「HTML 实体解析器」 是一种特殊的解析器,它将 HTML 代码作为输入,并用字符本身替换掉所有这些特殊的字符实体。
HTML 里这些特殊字符和它们对应的字符实体包括:
双引号:字符实体为 " ,对应的字符是 " 。
单引号:字符实体为 ’ ,对应的字符是 ’ 。
与符号:字符实体为 & ,对应对的字符是 & 。
大于号:字符实体为 > ,对应的字符是 > 。
小于号:字符实体为 < ,对应的字符是 < 。
斜线号:字符实体为 ⁄ ,对应的字符是 / 。
给你输入字符串 text ,请你实现一个 HTML 实体解析器,返回解析器解析后的结果。
示例 1:
输入:text = “& is an HTML entity but &ambassador; is not.”
输出:"& is an HTML entity but &ambassador; is not."
解释:解析器把字符实体 & 用 & 替换
解法:
字符串操作基本功考察咯,比赛的时候switch报了很奇怪的错,只好改成一堆if。
代码:
class Solution {
public:
string entityParser(string s) {
string res = "";
if(s.empty())
return res;
int p = 0;
while(p<s.length()){
string tmp = "";
if(s[p]=='&'){
while(p<s.length()&&s[p]!=';'){
tmp+=s[p];
++p;
}
if(p==s.length()){
res+=tmp;
}
else{
tmp+=s[p];
//cout<<tmp<<endl;
if(tmp=="""){
res+="\"";
}
else if(tmp=="'"){
res+="\'";
}
else if(tmp=="&"){
res+="&";
}
else if(tmp==">"){
res+=">";
}
else if(tmp=="<"){
res+="<";
}
else if(tmp=="⁄"){
res+="/";
}
else{
res += tmp;
}
}
}
else{
res+=s[p];
}
++p;
}
return res;
}
};
5383. 给 N x 3 网格图涂色的方案数
你有一个 n x 3 的网格图 grid ,你需要用 红,黄,绿 三种颜色之一给每一个格子上色,且确保相邻格子颜色不同(也就是有相同水平边或者垂直边的格子颜色不同)。
给你网格图的行数 n 。
请你返回给 grid 涂色的方案数。由于答案可能会非常大,请你返回答案对 10^9 + 7 取余的结果。
提示:
n == grid.length
grid[i].length == 3
1 <= n <= 5000
解法:
这题才是今天的重点,乍一看是一道数学题,实际上,他就是一道数学题。。。
至少我水平不济,想不出什么状态压缩dp,只好老老实实找规律。
其实我们可以发现,一行三个格子,有两种情况:使用两种颜色和使用三种颜色。
我们假设字母abc分别表示三种颜色,那么就有以下的涂色方式:
两种颜色:
- aba
- aca
- bab
- bcb
- cac
- cbc
三种颜色:
- abc
- acb
- bca
- bac
- cab
- cba
这时候我们考虑下一行,如果现在是两种颜色(aba),那么下一行可能的涂色方式:
- bcb
- bab
- cac
- bac
- cab
如果现在是三种颜色(abc),那么下一行可能的涂色方式:
- bab
- bcb
- bca
- cab
可以观察到,如果上一行是两种颜色,那么下一行有5种涂色方式,包含2种两色,3种三色;如果上一行是三种颜色,那么下一行有4种涂色方式,包含2种两色,2种三色。
这时候就可以发现递推规律已经出来了,写就行了。(其实这和状态压缩dp本质差不多)
代码:
class Solution {
public:
int numOfWays(int n) {
long long a,b,c,d;
a = 6;
b = 6;
long long mod = pow(10,9) + 7;
if(n==0) return 0;
if(n==1) return 12;
for(int i=2; i<=n; ++i){
c = a*3 + b*2;
c %= mod;
d = a*2 + b*2;
d %= mod;
a = c;
b = d;
}
long long res = a + b;
return res%mod;
}
};