
模式识别
11zx22zx33
这个作者很懒,什么都没留下…
展开
-
模式识别_2_基于贝叶斯决策理论的分类器
2.1 引言 以特征值的统计概率为基础 给定M个类()的分类任务和一个用特征向量x表示的样本,生成一系列条件概率(后验概率) 表示特征向量属于某一特定类的概率 2.2 贝叶斯决策理论 先验概率:样本总数,第i类样本数(每个类中样本的占比) 类条件(概率密度函数or概率): 描述一类中特征向量的分布情况,相对于x的的似然函数原创 2018-01-30 11:31:16 · 343 阅读 · 0 评论 -
模式识别_1_导论
1.1 模式识别的重要性 目的:将对象分类 重要应用: 1.机器视觉系统。分析图像生成描述信息 2.字符识别。印刷体识别,手写识别 3.计算机辅助诊断 4.语音识别 5.数据库中的数据挖掘与知识检索。 对象检索是基于关键词描述和部分字匹配——大量的人工标注 基于内容的检索——对象间的相似性 6.相似性搜索与DNA序列比对 1.2 特征、原创 2018-01-29 22:52:23 · 305 阅读 · 0 评论 -
模式识别_2_正态分布的贝叶斯分布
2.4 正态分布的贝叶斯分类 2.4.1 高斯概率密度函数 中心极限定理:如果一个随机变量是若干独立随机变量的总和,当被加数个数趋于无穷大时,他的概率密度函数近似高斯函数 在l维特征空间中,多变量高斯概率密度函数为 其中是均值,使协方差矩阵,定义为,用表示原创 2018-01-31 12:35:04 · 856 阅读 · 0 评论