/*转载请注明出处:乄心-小黄豆http://blog.csdn.net/wuxinxiaohuangdou*/
题目大意:一只老鼠要拿猫粮去各个仓库换豆子!
Input: M个猫粮,N个仓库。然后N行,每行第一个数为仓库的豆子数J[i],第二个数为需要的猫粮F[i]。
Output::输出老鼠用猫粮能够换到的最大 豆子数!(可以在一个仓库取走a%(即一部分!))
这题是 经典的部分背包问题,关键在于要按照(价值与重量的比例)排序!
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
double M;
int N;
int i;
#define MAX 1010
class Node //代表仓库
{
public:
double j,f,aver; //j为豆子数,f为需要的猫粮,ave为j/f即每付一个猫粮获得的豆子数(平均数)。
bool operator<(const Node &temp)const
{
return temp.aver<aver;//把平均数从大到小排序。
}
}a[MAX];
int main()
{
while(true)
{
cin>>M>>N;
if(M==-1&&N==-1) break;
double max_count=0;
for(i=1;i<=N;i++) /*输入每个仓库数据*/
{
cin>>a[i].j>>a[i].f;
a[i].aver=a[i].j/a[i].f;
}
sort(&a[1],&a[N+1]); //排序
for(i=1;M!=0&&i<=N;i++) //去仓库用猫粮换豆子!
{
if(a[i].f<M) //当仓库需要的猫粮小于现在拥有的
{
max_count+=a[i].j; //就把豆子全部取走。
M-=a[i].f; //付给相应的猫粮。
}
else
{
max_count+=a[i].aver*M; //否则当仓库需要的猫粮大于现在拥有的
M=0; //就取走能取走的一部分,猫粮就用完啦!!
}
}
printf("%.3lf\n",max_count);
}
return 0;
}
不需要考虑
0 1
1 0
1 0
0 1
的情况不然WA。