整数划分问题

描述

将一个正整数n表示成一系列正整数之和,n=n1+ n2+…+ nk(其中,n1≥n2≥…≥nk≥1,k≥1).正整数n的这种表示称为正整数n的划分。正整数n的不同的划分个数称为正整数n的划分数,记作P(n)。

例如,正整数6有如下11种不同的划分,所以P(6)=11.

6;

5+1;

4+2,4+1+1;

3+3,3+2+1,3+1+1+1;

2+2+2,2+2+1+1,2+1+1+1+1;

1+1+1+1+1+1.

输入

测试文件有多个测试数据,每个测试数据为一个正整数n(1≤n≤100),占一行。

输出

对每个测试数据计算其划分数P(n),每个结果占一行。

样例输入

6
2

样例输出

11
2

提示

算法不能使用简单循环和简单递归算法



#include<iostream>
#include<cstdio>
using namespace std;
int fun(int n,int m)
{
    if(n<1||m<1) return 0;
   if(n==1||m==1) return 1;
   if(n<m)  return fun(n,n);
   if(n==m)  return fun(n,m-1)+1;
   return fun(n,m-1)+fun(n-m,m);
}
int main()
{
 int n,i,j,s;
 while(cin>>n)
 {
   if(n<1||n>100) break;
   cout<<fun(n,n)<<endl;
 }
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值