3##关系
函数关系:确定性关系
相关关系:非确定性关系
相关系数:
这个相关系数在-1至1之间,如果是正相关,x与y同增同减少,反之相反。
相关系数越接近1,几何分布越接近直线。
如何确定参数:
- 使用平方差和衡量预测值与真实值的差距
- 平法误差真实值y,预测值y=ax+b,平法差就是y-(ax+b)的平方
- 虚招合适的参数,使得平方误差和RSS最小。
参考文章:https://www.jianshu.com/pRssfcd220697182
最后求出的求解公式是:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq ##引入最小二乘法算法
'''
创建体重y,身高x
'''
Yi = np.array([61, 57, 58, 40, 90, 35, 45])
Xi = np.array([170, 168, 175, 153, 185, 135, 172])
'''
设定拟合函数和偏差函数
函数的形状确定过程:
1.先画样本图像
2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)
'''
##需要拟合的函数func :指定函数的形状
def func(p,x):
k,b=p
return k*x+b
##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
# 我们的目标就是不断调整k和b使得error不断减小。
# 这里的error函数和神经网络中常说的cost函数实际上是一回事,只不过这里更简单些而已。
def error(p,x,y):
return func(p,x)-y
'''
主要部分:附带部分说明
1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
2.官网的原话(第二个值):Value of the cost function at the solution
3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3)
4.返回值元组中第一个值的数量跟需要求解的参数的数量一致
'''
#k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
#p0里放的是k、b的初始值,这个值可以随意指定。
# 往后随着迭代次数增加,k、b将会不断变化,使得error函数的值越来越小。
p0=[4,20]
#把error函数中除了p0以外的参数打包到args中(使用要求)
Para=leastsq(error,p0,args=(Xi,Yi))
#读取结果
k,b=Para[0]
print("k=",k,"b=",b)
print("cost:"+str(Para[1]))
print("求解的拟合直线为:")
print("y="+str(round(k,2))+"x+"+str(round(b,2)))
#p0=[0,0]
#k= 0.9076449857973351 b= -95.00755623113787
#cost:3
#y=0.91x+-95.01
#p0=[4,20]
#k= 0.9076449912059097 b= -95.0075571180014
#cost:1
#y=0.91x+-95.01
'''
绘图,看拟合效果.
matplotlib默认不支持中文,label设置中文的话需要另行设置
如果报错,改成英文就可以
'''
#画样本点
plt.figure(figsize=(8,6)) ##指定图像比例: 8:6
plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2)
#画拟合直线
x=np.linspace(0,200,100) ##在0-15直接画100个连续点
y=k*x+b ##函数式
plt.plot(x,y,color="red",label="拟合直线",linewidth=2)
plt.legend(loc='lower right') #绘制图例
plt.show()
# R语言的summary
# df = pd.DataFrame(y, x)
# print("============================")
# # print(df.corr())
# # print( df.info())
# print(df.describe())
# print("============================")
# print("Lower noise", pearsonr(x, y))
# print("Higher noise", pearsonr(x, y))
代码参考文章1:https://www.cnblogs.com/NanShan2016/p/5493429.html
代码参考文章2:https://www.cnblogs.com/lc1217/p/6514734.html

2472

被折叠的 条评论
为什么被折叠?



