POJ - 1185 炮兵阵地 状态压缩DP

http://poj.org/problem?id=1185


状态:

dp[i][j][k]表示第i行的状态为是s[j] 第i-1的状态为s[k];

状态压缩:

把每行的状态状态缩成一个2进制  逐行DP


#include <stdio.h>
#include <iostream>
#include <string.h>
#include <queue>
#include <vector>
using namespace std; 
const int maxn = 105;

int n,m;
int dp[maxn][65][65]; //dp[i][j][k]表示第i行的状态为是s[j] 第i-1的状态为s[k];
int map[maxn],sum[65],s[65];   //s存状态  最多60种
int tot;
int Max( int a,int b )
{
	return a>=b?a:b;
}
//状态s[x]是否造成行冲突  
bool ok(int x)   
{   
    if( x& (x<<1) )	return false;  
    if( x& (x<<2) )	return false;   
    return true;  
}   
  
//状态s[x]下有多少个1   
int getsum(int x)  
{   
    int sum = 0;   
    while( x > 0 )   
    {   
        if( x&1 ) sum ++;   
        x >>= 1;   
    }   
    return sum;   
} 
void find()   
{   
    memset( s,0,sizeof(s) );   
    for( int i=0; i<(1<<m); i++ ) //i枚举所有m位的二进制数  
    {   
        if( ok(i) )   
        {   
            s[tot] = i;   
            sum[tot++] = getsum(i);   
        }   
    
    }   
}   

int main() 
{ 
	//freopen("data.in","r",stdin);
	char temp;
    while( scanf("%d%d",&n,&m) != EOF )
	{
		memset( dp,-1,sizeof(dp) );
		for( int i = 0; i < n; i ++ )
		{
			getchar();
			for( int j = 0; j < m; j ++ )
			{
				scanf("%c",&temp);
				if( temp == 'H' )
					map[i] = map[i]|(1<<j);
			}
		}
		tot = 0;
		find();
		//1. 初始化第0行状态(只考虑有效状态,无效状态为-1)  
		for( int i = 0; i < tot; i ++ )
		{
			if( !( s[i] & map[0] ) )
				dp[0][i][0] = sum[i];
		}

		 //2. 计算第1~n-1行状态(碰到无效状态,continue) 
		for( int i = 1; i < n; i ++ )
		{
			for( int j = 0; j < tot; j ++ )//枚举第i行的状态 s[j] 
			{
				if( map[i] & s[j] )		//通过地形排除部分第i行的状态  
					continue;

				for(int p = 0; p < tot; p ++) //枚举第i-1行状态 s[p]  
				{
					if( s[j] & s[p] ) continue;   //r与i-1没有想接触的   
 
                    for( int q=0; q < tot; q ++) //枚举第i-2行状态s[q] 
					{
						if( (s[p] & s[q]) || (s[j] & s[q]) )   //排除i-1行与i-1行跟i行冲突
							continue;
						if( dp[i-1][p][q] == -1 )   //所有不可能的情形dp[i][j][k]都为-1(初始化的值)  
							continue;

						dp[i][j][p] = Max( dp[i][j][p], dp[i-1][p][q] + sum[j]);  
					}
				}
			}
		}
		int ans = 0;
		for( int i = 0; i < tot; i ++ )
		{
			for( int j = 0; j < tot; j ++ )
			{
				ans = Max( ans,dp[n-1][i][j] );
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值