关于Oracle10.2.0.5+linux5+raid5 IO问题分析

系统环境:CentOS release 5.10

应用环境:Oracle 10.2.0.5 + php5.2.17

 硬     件  :DELL R720,1T*3 7200r,raid5

业务环境:每5分钟sqlload入库5分钟内有效数据,数据大小30M左右


问题原由:

最近做了一次数据迁移,硬件由之前的300G*3 7200r变为1T*3 7200r并硬件raid5,其他环境对等迁移,但是迁移过后,感觉io写的效率极低,开始分析io是否存在瓶颈。


分析过程:

刚发现io写效率低是在业务写的同时手工进行一个大文件的io写,业务写被完全阻塞,同时服务器负载曾一度高至50左右(负载最高时cpu wait 45%左右,iowait 35%左右),看到这个负载,立马在oracle里面跑了一下相关sql【select * from v$locked_objects;select * from v$lock where request <> 0 or block <> 0;】,没有产生锁阻塞,还是觉得跑下awr,对比一下迁移之前和迁移之后做个对比吧,结果跑完之后,挺让人惊讶的(结果有一部分原因也算有点情理之中)


awr信息:2:00-3:00,纯业务,无其他操作,业务操作量相同,oracle配置完全相同(除redolog路径):

179数据库(迁移前):

Top 5 Timed Events

Event Waits Time(s) Avg Wait(ms) % Total Call Time Wait Class
CPU time   348   95.6  
log file sync 12,706 12 1 3.3 Commit
log file parallel write 13,531 12 1 3.2 System I/O
enq: TM - contention 4 9 2,362 2.6 Application
control file parallel write 2,102 6 3 1.7 System I/O

51数据库(迁移后):【由于仅有的3块硬盘被做成了raid5,所以redolog只能被放在raid5阵列上】:

Top 5 Timed Events

Event Waits Time(s) Avg Wait(ms) % Total Call Time Wait Class
log file parallel write 12,626 220 17 87.2 System I/O
log file sync 12,940 217 17 86.2 Commit
control file parallel write 1,734 85 49 33.7 System I/O
CPU time
37
14.8
log file switch completion 16 3 172 1.1 Configuration

wait time一部分原因是redo同datafile一起被放到了raid5上,io争用导致的,但也可以看出这个io整体的效率,还是要比之前差很多

所以针对io,做了一系列的测试,包括os上的dd测试(dd if=/dev/zero of=/Data/apps/oracle/product/10.2.0/oradata/detail/detail//1Gb.file bs=1024 count=1000000),往两个服务器上分别dd一个临时文件,然后用iostat观察io情况,结果如下:

179服务器(迁移前):


51服务器(迁移后):



       看到这两个IO对比,发现51服务器的dm-0各项数值很高,远大于数据盘sda2和sda的io数值,先来研究一下dm-0的各项数据 。

       首先w/s显示,写请求次数对比数据盘的sda和sda2来说,写请求2242.33太高,而相对应的avgrq-sz可以看到,每次平均写才8,基本都是小文件,但请求很频繁,%iowait 24.81%,再结合avgqu-sz、svctm和%util来看,导致io队列太长,io负载已经很高,确定存在瓶颈。

       同时对比sda,sda2数据盘的io数据,差异比较大的首先就是wsec/s(每秒写扇区数),迁移前后,wsec/s差了8.9倍,在同样业务,同样数据量的情况下,差这么多,完全不正常,个人觉得,估计就是迁移后,频繁的小io写请求,加之硬盘转速不够,导致io瓶颈被放大。而在同样数据量、业务逻辑的两个io环境,迁移后io为何出现如此频繁的小io写请求,猜测应该和raid5数据交叉校验有关。RAID5把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上,每次写数据都会用其他盘区的校验数据去校验正在 io的数据是否有效和一致,应该就是造成频繁小IO写的原因之一。

以上只是个人的一个认识和理解,由于刚刚恶补IO这块的知识,所以错误在所难免,欢迎纠错!


相关介绍:

=====================================================

=====================iostat详解========================

=====================================================


rrqm/s:   每秒进行 merge 的读操作数目.即 delta(rmerge)/s
wrqm/s:  每秒进行 merge 的写操作数目.即 delta(wmerge)/s
r/s:           每秒完成的读 I/O 设备次数.即 delta(rio)/s
w/s:         每秒完成的写 I/O 设备次数.即 delta(wio)/s
rsec/s:    每秒读扇区数.即 delta(rsect)/s
wsec/s:  每秒写扇区数.即 delta(wsect)/s
rkB/s:      每秒读K字节数.是 rsect/s 的一半,因为每扇区大小为512字节.(需要计算)
wkB/s:    每秒写K字节数.是 wsect/s 的一半.(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区).delta(rsect+wsect)/delta(rio+wio)
avgqu-sz: 平均I/O队列长度.即 delta(aveq)/s/1000 (因为aveq的单位为毫秒).
await:    平均每次设备I/O操作的等待时间 (毫秒).即 delta(ruse+wuse)/delta(rio+wio)
svctm:   平均每次设备I/O操作的服务时间 (毫秒).即 delta(use)/delta(rio+wio)
%util:      一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的.即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈.
idle小于70% IO压力就较大了,一般读取速度有较多的wait.
同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)
另外 await 的参数也要多和 svctm 来参考.差的过高就一定有 IO 的问题.
avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小.如果数据拿的大,才IO 的数据会高.也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s.也就是讲,读定速度是这个来决定的.

另外还可以参考
svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加.await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式.如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU.
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水.


=====================================================

========================raid 5========================

=====================================================


       RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。 RAID 5可以理解为是RAID 0和RAID 1的折中方案。RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。

 运作

       以四个硬盘组成的RAID 5为例,其数据存储方式如概述中的图片所示:图中,P0为D0、D1和D2的奇偶校验信息,其它以此类推。由图中可以看出,RAID 5不对存储的数据进行备份,而是把数据和与其相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。

校验

       RAID5校验位算法原理
       P=D1 xor D2 xor D3 … xor Dn (D1,D2,D3 … Dn为数据块,P为校验,xor为异或运算)
       XOR(Exclusive OR)的校验原理如下表:
A值
B值
Xor结果
0
0
0
1
0
1
0
1
1
1
1
0
        这里的A与B值就代表了两个位,从中可以发现,A与B一样时,XOR结果为0,A与B不一样时,XOR结果就是1,而且知道XOR结果和A与B中的任何一个数值,就可以反推出另一个数值。比如A为1,XOR结果为1,那么B肯定为0,如果XOR结果为0,那么B肯定为1。这就是XOR编码与校验的基本原理。
读写
        用简单的语言来表示,至少使用3块硬盘(也可以更多)组建RAID5磁盘阵,当有数据写入硬盘的时候,按照1块硬盘的方式就是直接写入这块硬盘的磁道,如果是RAID5的话这次数据写入会根据算法分成3部分,然后写入这3块硬盘,写入的同时还会在这3块硬盘上写入校验信息,当读取写入的数据的时候会分别从3块硬盘上读取数据内容,再通过检验信息进行校验。当其中有1块硬盘出现损坏的时候,就从另外2块硬盘上存储的数据可以计算出第3块硬盘的数据内容。也就是说raid5这种存储方式只允许有一块硬盘出现故障,出现故障时需要尽快更换。当更换故障硬盘后,在故障期间写入的数据会进行重新校验。 如果在未解决故障又坏1块,那就是灾难性的了。
存储
        RAID5把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上,其中任意N-1块磁盘上都存储完整的数据,也就是说有相当于一块磁盘容量的空间用于存储奇偶校验信息。因此当RAID5的一个磁盘发生损坏后,不会影响数据的完整性,从而保证了数据安全。当损坏的磁盘被替换后,RAID还会自动利用剩下奇偶校验信息去重建此磁盘上的数据,来保持RAID5的高可靠性。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值