hdu 4026 Unlock the Cell Phone(DP-状态DP)

Unlock the Cell Phone

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 632    Accepted Submission(s): 289


Problem Description
Modern high-tech cell phones use unlock patterns to unlock the system. The pattern is usually a 3*3 dot array. By moving your finger over there dots, you can generate your personal unlock pattern. More specifically, press your finger over any starting dot, then slide all the way to the next dot, touch it, and so on. Jumping is not allowed. For example, starting from dot 1, you can slide to touch dot 2, dot 4 and dot 5, but sliding directly to dot 3, dot 7 or dot 9 are not allowed. Note that sliding from 1 to 6 and 8 is also allowed because they are not considered as jumping over any dot. However, you can jump a dot if it has been touched before. For example, staring with 1-5-9-6, you can slide directly to dot 4.

Here is a very particular cell phone. It has a dot array of size n*m. Some of the dots are ordinary ones: you can touch, and slide over them when touched before; some are forbidden ones: you cannot touch or slide over them; some are inactive ones: you cannot touch them, but can slide over them. Each dot can only be touched once. You are required to calculate how many different unlock patterns passing through all the ordinary dots.
 

Input
The input contains several test cases. Each test case begins with a line containing two integers n and m (1 <= n, m <= 5), indicating the row and column number of the lock keypad. The following n lines each contains m integers kij indicating the properties of each key, kij=0 stands for an ordinary key, kih=1 stands for a forbidden key; and kij=2 stands for an inactive key. The number of ordinary keys is greater than zero and no more than 16.
 

Output
For each test, output an integer indicating the number of different lock patterns.
 

Sample Input
  
  
2 2 0 0 0 0 3 3 0 0 0 0 2 1 0 0 0
 

Sample Output
  
  
24 2140
 

Source
 

Recommend
lcy
 
一,预处理每两个点间有哪些点。
二,把每个能按的点编号,1-16最多。
三,状态DP(i,sta),表示当前在i这个点,sta是二进制表示走过哪些点。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;

#define ll long long
const int maxn = 1<<17;
ll dp[20][maxn];
int visited[20][maxn] , vis , n , m;
int mp[6][6] , ID[6][6] , cnt;
struct Node{
    int r , c;
    Node(int a = 0 , int b = 0){
        r = a , c = b;
    }
}node[20];
vector<Node> between[6][6][6][6];

bool check(int r1 , int r2 , int c1 ,int c2 ,int r ,int c){
    if(r == r1 && c == c1) return false;
    if(r == r2 && c == c2) return false;
    if(r >= min(r1 , r2) && r <= max(r1 , r2) && c >= min(c1 , c2) && c <= max(c1 , c2)){
        if((r2-r)*(c-c1) == (r-r1)*(c2-c)) return true;
        return false;
    }
    return false;
}

void init(){
    memset(dp , 0 , sizeof dp);
    memset(visited , 0 , sizeof visited);
    vis = 0;
    for(int r1 = 0; r1 < 6; r1++){
        for(int c1 = 0; c1 < 6; c1++){
            for(int r2 = 0; r2 < 6; r2++){
                for(int c2 = 0; c2 < 6; c2++){
                    if(r1 == r2 && c1 == c2) continue;
                    for(int r = 0; r < 6; r++){
                        for(int c = 0; c < 6; c++){
                            if(check(r1 , r2 , c1 , c2 , r , c)){
                                between[r1][c1][r2][c2].push_back(Node(r , c));
                            }
                        }
                    }
                }
            }
        }
    }
}

void initial(){
    memset(mp , 0 , sizeof mp);
    memset(ID , 0 , sizeof ID);
    cnt = 0;
    vis++;
}

void readcase(){
    for(int i = 0; i < n; i++){
        for(int j = 0; j < m; j++){
            scanf("%d" , &mp[i][j]);
            if(mp[i][j] == 0){
                ID[i][j] = cnt;
                node[cnt++] = Node(i , j);
            }
        }
    }
}

ll DP(int k , int sta){
    //cout << "k=" <<k << " sta=" << sta << endl;
    if(sta == (1<<cnt)-1) return 1;
    if(visited[k][sta] == vis) return dp[k][sta];
    visited[k][sta] = vis;
    int r1 = node[k].r , c1 = node[k].c;
    ll ans = 0;
    for(int i = 0; i < cnt; i++){
        if((sta&(1<<i)) <= 0){
            int r2 = node[i].r , c2 = node[i].c;
            bool flag = true;
            for(int j = 0; j < between[r1][c1][r2][c2].size(); j++){
                int r = between[r1][c1][r2][c2][j].r , c = between[r1][c1][r2][c2][j].c;
                //cout << "r1=" << r1 << " c1=" << c1 << " r2=" << r2 << " c2=" << c2 << " r=" << r << " c=" << c << endl;
                if(mp[r][c] == 1) flag = false;
                if(mp[r][c] == 0 && (sta&(1<<ID[r][c])) <= 0) flag = false;
                if(!flag) break;
            }
            if(flag) ans += DP(i , (sta+(1<<i)));
        }
    }
    return dp[k][sta] = ans;
}

void computing(){
    ll ans = 0;
    for(int i = 0; i < cnt; i++){
        ans += DP(i , (1<<i));
        //cout << i << ":" << ans << endl;
    }
    printf("%I64d\n" , ans);
}

int main(){
    init();
    while(~scanf("%d%d" , &n , &m)){
        initial();
        readcase();
        computing();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值