机器学习
文章平均质量分 92
雨降
这个作者很懒,什么都没留下…
展开
-
线性回归模型 Linear Models for Regression
线性回归模型理解线性回归模型找到一条连续的线(线性方程),能够最大程度的拟合所有的点如果点是二维,那么就只有y,x1y,x_1y,x1如果是三维,那么有y,x1,x2y,x_1,x_2y,x1,x2以此类推也可以让x1=w2=wMx_1=w_2=w_Mx1=w2=wM。即,并不严格限制方程中的xxx与数据点的维度数量对应。其中Basis function可以是多项式,...原创 2019-11-12 04:03:28 · 494 阅读 · 0 评论 -
机器学习——多层感知机MLP的相关公式
前馈神经网络:单向传播单层感知机是最简单的前馈神经网络,没有隐藏层,只能学习线性函数多层感知机,至少一个隐藏层,可以学习非线性函数反向传播 back propagation从错误中学习:输出会和我们已知的、期望的输出进行比较,误差会「传播」回上一层。该误差会被标注,权重也会被相应的「调整」...原创 2019-10-31 02:31:02 · 13655 阅读 · 0 评论 -
梯度下降 Gradient descent
文章非原创,内容均引用自别处,已在下文中注明出处梯度下降 Gradient descent什么是梯度梯度是偏导数的集合梯度下降算法θ=θ0−η⋅∇f(θ0)\theta=\theta_0-\eta⋅\nabla f(\theta_0)θ=θ0−η⋅∇f(θ0)其中,θ0θ_0θ0是自变量参数,即下山位置坐标,ηηη是学习因子,即下山每次前进的一小步(步进长度),θθθ是更新后的...原创 2019-10-22 03:05:01 · 292 阅读 · 0 评论 -
机器学习——MP神经元、感知机网络、梯度下降
参考文章:一看就懂的感知机算法PLA(基础概念)感知机 PLA(Perceptron Learning Algorithm)(加深理解)McCulloch and Pitts 神经元基本原理如下图:由McCulloch和Pitts于1943年发表,简单模拟了神经元的反应流程,包括:多个带有权重的输入wi×xiw_i×x_iwi×xi,相当于「突触」xix_ixi是输入值,...原创 2019-10-22 06:35:35 · 2724 阅读 · 0 评论 -
机器学习——最邻近算法 Nearest neighbour method / K邻近算法(KNN)
References从K近邻算法、距离度量谈到KD树、SIFT+BBF算法最邻近算法 / K邻近算法 / KNN。找到离「当前点」最近的「K个数据点」,然后根据「少数服从多数」原则,对「当前点」进行分类。如果K取值太小,可能导致过度拟合。即,如果邻近样本是「噪声」,则会对训练结果造成影响——训练结果在训练集中表现变好,但在测试集中表现变差——近似误差减少,估计误差增大如果K值...原创 2019-10-15 06:30:50 · 3360 阅读 · 0 评论 -
机器学习的准备:过度拟合、混淆矩阵、精度测量/二元分类、ROC曲线
输入(Input):输入算法中的数据输出(Output):算法根据输入数据产生的输出数据输入向量(Input vectors):一串实数,如(0.2,-3.5,1.21,-0.75)向量的大小(The size of vector):向量中个元素的数量,也称为输入的维度(dimensionality of the input)。当在坐标系中画点(plot the vector as a p...原创 2019-10-14 03:58:06 · 938 阅读 · 0 评论 -
机器学习的划分:监督学习、非监督学习、强化学习、进化学习
监督学习(Supervised learning):提供带有正确结果的训练集,基于训练集,算法将归纳(generalization)出“如何正确的响应所有可能的输入”。也称之为”示例学习(learning from examples)”回归(Regression):找到某种函数,使函数曲线的路径尽可能的靠近所有的数据点。分类(Classification):根据训练中不同类(class)的...原创 2019-10-13 22:17:42 · 3331 阅读 · 0 评论