【清华大学】《逻辑学概论》笔记

教学视频来源

- - -
- 第0讲 概要 -
0.1 讲师介绍 0.2 课程内容 -
- 第1讲 什么是逻辑学? -
1.1 “逻辑和逻辑学 1.2 推理和推理形式 1.3 有效推理形式
1.4 逻辑学的特点 1.5 逻辑学的基本准则 1.6 逻辑学和其他学科的关系
1.7 关于本课程《逻辑学概论》 - -
- 第2讲 逻辑学的产生与发展 -
2.1 中国古代逻辑思想(上) 2.2 中国古代逻辑思想(中) 2.3 中国古代逻辑思想(下)
2.4 印度古代逻辑 2.5 古希腊和中世纪逻辑 2.6 近代西方逻辑
2.7 数理逻辑的提出和实现 2.8 数理逻辑的发展 -
- 第3讲 命题联结词及其基本推理形式 -
3.1 推理和命题 3.2 基本命题和复合命题 3.3 常用命题联结词及其基本推理形式(1)
3.4 常用命题联结词及其基本推理形式(2) 3.5 常用命题联结词及其基本推理形式(3) 3.6 常用命题联结词及其基本推理形式(4)
3.7 常用命题联结词及其基本推理形式(5) 3.8 常用命题联结词及其基本推理形式(6) 3.9 常用命题联结词及其基本推理形式(7)
- 第4讲 复合命题的推理:有效推理形式的判定 -
4.1 重言式、矛盾式和可满足式 4.2 具体推理转换为推理形式 4.3 推理形式转换为复合命题形式
4.4 有效推理形式的判定:真值表法 4.5 有效推理形式的判定:归谬赋值法 -
- 第5讲 复合命题的推理:命题联结词的充足集 -
5.1 命题联结词:真值函数 5.2 析取范式 5.3 为复合命题形式作与之等值的析取范式
5.4 合取范式 5.5 范式存在定理 5.6 命题联结词的充足集
5.7 命题联结词的独元充足集 - -
- 第6讲 命题演算:公理系统 -
6.1 公理系统的构成 6.2 命题演算的公理系统L 6.3 命题演算公理系统L中的证明
6.4 命题演算公理系统L中的证明(续) 6.5 命题演算公理系统L中的推演 -
- 第7讲 命题演算:公理系统,自然演绎系统 -
7.1 公理系统出发点的延伸 7.2 公理系统的评价 7.3 公理系统的性质和评价及其意义
7.4 命题演算的自然演绎系统 7.5 命题演算自然演绎系统中的证明和推演 -
- 第8讲 基本命题的构成 -
8.1 基本命题的结构 8.2 词项的内涵和外延 8.3 词项的种类
8.4 词项间的关系 8.5 词项的定义 8.6 词项的划分
8.7 谓词的分类 8.8 量词 8.9 联词
- 第9讲 传统逻辑中基本命题的推理 -
9.1 基本命题的推理 9.2 传统逻辑对基本命题的分析 9.3 性质命题中主、谓词的周延
9.4 命题变形的推理 9.5 根据对当关系的推理 9.6 三段论
9.7 三段论的式与格 9.8 有效三段论的判定 -
- 第10讲 基本命题的推理 -
10.1 性质命题 10.2 主词非空的预设 10.3 关系命题的结构
10.4 关系命题根据量词的推理 10.5 关系命题根据谓词性质的推理方法 10.6 谓词演算简介
- 第11讲 非经典逻辑的初步 -
11.1 非经典(非标准)逻辑 11.2 多值逻辑 11.3 模糊逻辑
11.4 模态逻辑 11.5 规范逻辑 11.6 时态逻辑
11.7 弗协调逻辑 - -
- 第12讲 余论 -
12.1 演绎和归纳 12.2 探求因果关系的逻辑方法 12.3 证论和反驳
12.4 悖论 12.5 本课程《逻辑学概论》内容回顾 -

第0讲 概要

0.1 讲师介绍

陈为蓬 清华大学人文学院 副教授

0.2 课程内容

  • 第1讲 什么是逻辑学?
  • 第2讲 逻辑学的产生与发展
  • 第3讲 命题联结词及其基本推理形式
  • 第4讲 复合命题的推理:有效推理形式的判定
  • 第5讲 复合命题的推理:命题联结词的充足集
  • 第6讲 命题演算:公理系统
  • 第7讲 命题演算:公理系统,自然演绎系统
  • 第8讲 基本命题的构成
  • 第9讲 传统逻辑中基本命题的推理
  • 第10讲 基本命题的推理
  • 第11讲 非经典逻辑的初步
  • 第12讲 余论

第1讲 什么是逻辑学?

1.1 “逻辑和逻辑学

什么是逻辑?

“逻辑”一词的多种用法:

  • “事物发展有其内在的逻辑。”
  • “这个人为人处世,有他自己的逻辑。”
  • “按照对方辩友的逻辑,岂不是说…?”

帝国主义者的逻辑和人民的逻辑是这样的不同。捣乱,失败,再捣乱,再失败,直至灭亡————这就是帝国主义和世界上一切反动派对待人民事业的逻辑,他们决不会违背这个逻辑的。…斗争,失败,再斗争,再失败,再斗争,直至胜利一这就是人民的逻辑,他们也是决不会违背这个逻辑的。 ————(毛泽东:《丢掉幻想准备斗争》)

上面的逻辑与逻辑学中的逻辑相差甚远,上面更多的是客观规律,行为方式。


“逻辑”一词的另多种用法:

  • “说话、写文章都要讲逻辑。”
  • “这篇论文结构严谨,逻辑严密。”
  • “他的发言颠三倒四,逻辑混乱。”

上面的逻辑与逻辑学中的逻辑比较接近,但仍然不是逻辑学中研究对象。

逻辑(logic)一词的语源

  • 来自希腊语logos (逻各斯) :
  • 世界的可理解的规律;
  • 一般的原理和规则;
  • 语言、命题、说明、解释、论证;
  • 理性、理念、推理、推理能力;
  • 尺度、关系、比例、价值;

“逻辑”一词的不同含义:

  • 客观事物的规律性;
  • 某种理论、观点、行为方式;(比如上面毛主席的话)
  • 思维的规律、规则;(比如文章复合逻辑)
  • 一门学科,即逻辑学。

逻辑学:以推理形式为主要研究对象的学科(要与日常中逻辑区分开来)

1.2 推理和推理形式

推理:从已知条件(前提)得出结论的过程

例如,侦破案件步骤:

  • 提取材料
  • 搜集条件
  • 得出结论

侦破案件是一个推理过程

又例如,法庭审案根据案卷(关于案件的材料、已知条件),作出判罚,这也是推理过程。

又例如,数学上证明定理:用公理、定理推出新定理,这也是推理过程。

我们日常生活中,不经意都会推理(例如,父母回到家,摸电视背后,感觉有没有发烫,判断小孩在自己进门前是否在观看电视)

推理形式:推理的结构

同类的不同具体推理具有共同的结构,即推理形式

  • 所有金属都是导体,铜是金属 -> 铜是导体
  • 所有鸟都是卵生的,企鹅是鸟 -> 企鹅是卵生的
  • 所有A都是B,C是A -> C是B(共同的结构)

1.3 有效推理形式

  • 所有金属都是导体,铜是金属 -> 铜是导体(正确)

  • 所有A都是B,C是A -> C是B(有效推理形式)

  • 所有金属都是导体,铜是导体 -> 铜是金属(不正确)(反例:碳是导体)

  • 所有A都是B,C是B -> C是A(无效推理形式)

有效推理形式

  • 真前提通过有效推理形式只能得到真结论。
  • 即:通过有效推理形式,从真前提不会得到假结论。

逻辑:研究推理、推理形式

1.4 逻辑学的特点

  • 抽象性
  • 应用性
  • 工具性

所有的科学在某种意义上都是某一方面的抽象

数理逻辑的公理系统中:符号只是符号本身,具有非常高的抽象性(也就是具有广泛应用性)

逻辑是一门高度抽象的学科,应用范围广。

欧姆定理 U = IR,通过实验得出。之后可用数学求出,可不再用实验求其中某一值。

数学是物理学和很多学科的工具。逻辑学也一样。


  • 因A=B,故B=A 对
  • 因A>B,故B>A 错
  • 因A!=B,故B!=A 对

显然它们是正确,但“显然”不靠谱。在逻辑学上,若两对象关系是对称的,则位置可互换,否则,不行。


  • 由A=B和B=C,可得A=C。

显然这是正确。在逻辑学上,等于号=具有传递的关系

1.5 逻辑学的基本准则

逻辑学研究对象范围很小:推理以及与推理有关的问题。

逻辑学的基本准则:

  • 同一律 A就是A(譬如,跑题)
  • (不)矛盾论 不矛盾论就是矛盾律,A不是非A,A和A的否定不能同时成立
  • 排中律:A或A的否定必有一真,也就是没有中间态

矛盾论:A和A的否定不能同时成立,但是日常生活中,常常描述某事物同时是好是坏,如这事物指下雪。

正确的解读:

  • A:下雪是好事

  • A的否定:下雪是坏事

  • A1:下雪对冬小麦是好事

  • A2的否定:下雪对交通是坏事

A与A1是不同的


同一律,(不)矛盾论普遍适用

而排中律的适用范围是没有中间状态的,而二者互补的

例子:

  • 张三是男生,张三是女生,违反矛盾论
  • 张三不是男生,张三不是女生,违反排中律

日常生活中,符不符合逻辑,往往就逻辑学的基本准则几方面而言的。

1.6 逻辑学和其他学科的关系

逻辑学与以下学科的关系密切

  • 哲学
  • 数学
  • 语言学
  • 计算机科学

逻辑学最早是作为哲学的一部分存在的。

哲学,狭义理解,主要解决世界本原问题,物质的,还是精神的,是主观的,还是客观的。

本体论和认识论是哲学的核心。

广义理解,包括逻辑学,伦理学,美学


数理逻辑:用数学的方法、数学的语言、数学的工具研究推理。数理逻辑的成果为数学基础的研究服务。


语言是逻辑的外壳

语文老师会认为“整个大楼片漆黑,只有那个窗户灯火通明。”是不对的,因为这两个子句互为矛盾

同样,“中国有着世界上任何国家都没有的万里长城”也是不对的。


计算机科学 离散数学

最早的逻辑系统:二值,是与不是

推理:演绎和归纳

  • 演绎:从一般到个别
  • 归纳:从个别到一般

计算机为未做到归纳,但能做到演绎

归纳逻辑它的一个任务是要把我们所做的具体的归纳,要给出归纳的有效推理形式。

1.7 关于本课程《逻辑学概论》

传统逻辑还是数理逻辑?

  • 传统逻辑:古典逻辑 古希腊亚里士多德为代表。
  • 数理逻辑:现代逻辑 西方以莱布尼茨为创始人。

课程内容:数理逻辑的基础部分和传统逻辑的常用部分。

数理逻辑:不涉及任何一门高等数学的具体内容。

通过具体的推理了解:逻辑的精神、逻辑的方法、逻辑的思路。

第2讲 逻辑学的产生与发展

2.1 中国古代逻辑思想(上)

逻辑学的产生和发展

了解逻辑学的思路、精神、方法

世界三大逻辑传统:

  1. 中国
  2. 印度
  3. 希腊

中国先秦时代的逻辑思想:春秋战国,百家争鸣

中国古代逻辑思想不像希腊那样单纯研究推理,而是渗透在,贯穿在对于其他许多问题的研究与论述当中。

孔子为主要代表

子日:觚不觚,觚哉!觚哉!————《论语.雍也篇》(觚:用来喝酒的青铜具)

子日:必也正名乎! …名不正则言不顺,言不顺则事不成,事不成则礼乐不兴,礼乐不兴则刑罚不中,刑罚不中则民无所措手足。故君子名之必可言也,言之必可行也。————《论语.子路篇》(推理)

白马非马

日:“马非马,可乎?”

日:“可。”

日:“何哉?”

日: “马者所以命形也。白者所以命色也。命色者非命形也,故日白马非马。”…

日:“求马,黄、黑马皆可致。求白马,黄、黑马不可致。”

————公孙龙子《白马论》

  • 传统逻辑:日常语言
  • 数理逻辑:人工语言

例如日常语言的“是”有多种含义(“白马非马”的例子),需要更精准语言进行描述

“是”更精确地表达

2.2 中国古代逻辑思想(中)

庄子与惠子游于濠梁之上。庄子日:“鲦鱼出游从容,是鱼之乐也。”

惠子日:“子非鱼,安知鱼之乐?”(安:哪里?怎么?惠子的“安”是指“怎么”)

庄子日:“子非我,安知我不知鱼之乐?”

惠子日:“我非子,固不知子矣;子固非鱼也,子之不知鱼之乐,全矣。”

庄子日:“请循其本。子日‘汝安知鱼乐’云者,既已知吾知之而问我,我知之濠上也。”(庄子以“安”作为“哪里”进行回答,违反逻辑学的基本准则的同一律)
————《庄子.外篇.秋水第十七》

楚人有鬻盾与矛者,誉之日:“吾盾之坚,物莫能陷也。”又誉其矛日:“吾矛之利,于物无不陷也。”或日,“以子之矛陷,子之盾何如?”其人弗能应也。

不可陷之盾与无不陷之矛,不可同世而立。(说明矛盾律的原理)
————《韩非子.难一》

2.3 中国古代逻辑思想(下)

类比(濠梁之辩),递推(孔子的正名)作为推理手段

墨家

前期墨家:墨家创始人墨翟(墨子,约公元前476-前390)本人在世时所组成的学派。

后期墨家:墨翟去世后由其弟子所组成的学派。

《墨子》:《墨经》(《墨辩》)

《墨经》:经上、经下、经说上、经说下、大取、小取。

知识的来源:亲知(我直接感受到的),闻知(别人告诉我的),说知(这的“说”是指推理)。

知识的内容:名知(如知道梧桐树的名字),实知(如知道梧桐树的具体事物),合知(如知道梧桐树的名字和它具体事物),为知(实践,如怎么保护它)。

提出比较完整的逻辑体系,但不是逻辑学的名著。

夫辩者,将以明是非之分,审治乱之纪,明同异之处,察名实之理,处利害,决嫌疑焉。(推理很重要)

以名举实,以辞抒意,以说出故。
————《墨经.小取》

  • 以名举实:用不同的名去对应不同的实(概念)。(命题)
  • 以辞抒意:用句子表达一个意思。(判断)
  • 以说出故:用推理可以知道事物的原因。(推理)

为什么逻辑学主要在先秦时期发展?百家争鸣

后秦时期主要以儒家思想为主(怎么修身齐家治国平天下,也就是社会科学和人文科学方面比较看重),逻辑学没有太大的成就。

2.4 印度古代逻辑

古代论辩术(公元前5世纪一前3世纪)

正理论

因明

佛教逻辑:因明

  • 创始人:龙树(约2-3世纪间)
  • 陈那(约425-495) :开创新因明,《因明正理门论》、《集量论》
  • 商羯罗主(5世纪):《因明入正理论》
  • 宗,因,喻

佛教有五明:

  • 声明
  • 医方明
  • 因明
  • 内明
  • 工巧明

因明的三支论式

  • 宗:此山有火
  • 因:因有烟故
  • 喻:凡有烟均有火,如厨房(同喻)。凡无烟均无火,如湖(反喻)。

古五支论式:宗、因、

考进清华大学需要具备扎实的学科知识和高水平的综合素质,如数理基础、英语能力、创新思维、领导力等。以下是一些学习方法可以帮助你提高考取清华大学的可能性: 1. 建立知识体系:清华大学是一所综合性强、科研实力突出的高水平大学,因此入学考试包含的知识面非常广泛。建立知识体系是提高各科综合素质的关键。可以利用教材、参考书、网络等资源系统学习各门学科,逐渐建立起自己的知识框架。 2. 提高英语能力:英语是清华大学入学考试中的一项必考科目,也是日后学习、科研和社会交往中必不可少的工具。可以通过大量阅读、听力训练、口语练习等方式提高英语能力,积累词汇量和语感。 3. 培养创新思维:清华大学强调创新精神,培养学生的创新能力。可以通过参加各种科技比赛、科研项目、实习等方式,锻炼自己的创新思维和实践能力。同时,也要注重思维方法和逻辑推理的训练。 4. 提高学习效率:清华大学的学习强度很大,需要学生具备高效的学习方法和时间管理能力。可以采用番茄工作法、时间表管理、分块学习等方法提高学习效率,避免浪费时间和精力。 5. 多方面发展:清华大学注重学生的全面素质和综合能力,因此除了学业之外,还需要注重体育锻炼、文艺活动、社会实践等方面的发展。可以利用课余时间参加各种社团、组织、志愿者活动等,扩展自己的兴趣爱好和实践经验。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值