第0讲 概要
0.1 讲师介绍
陈为蓬 清华大学人文学院 副教授
0.2 课程内容
- 第1讲 什么是逻辑学?
- 第2讲 逻辑学的产生与发展
- 第3讲 命题联结词及其基本推理形式
- 第4讲 复合命题的推理:有效推理形式的判定
- 第5讲 复合命题的推理:命题联结词的充足集
- 第6讲 命题演算:公理系统
- 第7讲 命题演算:公理系统,自然演绎系统
- 第8讲 基本命题的构成
- 第9讲 传统逻辑中基本命题的推理
- 第10讲 基本命题的推理
- 第11讲 非经典逻辑的初步
- 第12讲 余论
第1讲 什么是逻辑学?
1.1 “逻辑和逻辑学
什么是逻辑?
“逻辑”一词的多种用法:
- “事物发展有其内在的逻辑。”
- “这个人为人处世,有他自己的逻辑。”
- “按照对方辩友的逻辑,岂不是说…?”
帝国主义者的逻辑和人民的逻辑是这样的不同。捣乱,失败,再捣乱,再失败,直至灭亡————这就是帝国主义和世界上一切反动派对待人民事业的逻辑,他们决不会违背这个逻辑的。…斗争,失败,再斗争,再失败,再斗争,直至胜利一这就是人民的逻辑,他们也是决不会违背这个逻辑的。 ————(毛泽东:《丢掉幻想准备斗争》)
上面的逻辑与逻辑学中的逻辑相差甚远,上面更多的是客观规律,行为方式。
“逻辑”一词的另多种用法:
- “说话、写文章都要讲逻辑。”
- “这篇论文结构严谨,逻辑严密。”
- “他的发言颠三倒四,逻辑混乱。”
上面的逻辑与逻辑学中的逻辑比较接近,但仍然不是逻辑学中研究对象。
逻辑(logic)一词的语源
- 来自希腊语logos (逻各斯) :
- 世界的可理解的规律;
- 一般的原理和规则;
- 语言、命题、说明、解释、论证;
- 理性、理念、推理、推理能力;
- 尺度、关系、比例、价值;
“逻辑”一词的不同含义:
- 客观事物的规律性;
- 某种理论、观点、行为方式;(比如上面毛主席的话)
- 思维的规律、规则;(比如文章复合逻辑)
- 一门学科,即逻辑学。
逻辑学:以推理形式为主要研究对象的学科(要与日常中逻辑区分开来)
1.2 推理和推理形式
推理:从已知条件(前提)得出结论的过程
例如,侦破案件步骤:
- 提取材料
- 搜集条件
- 得出结论
侦破案件是一个推理过程
又例如,法庭审案根据案卷(关于案件的材料、已知条件),作出判罚,这也是推理过程。
又例如,数学上证明定理:用公理、定理推出新定理,这也是推理过程。
我们日常生活中,不经意都会推理(例如,父母回到家,摸电视背后,感觉有没有发烫,判断小孩在自己进门前是否在观看电视)
推理形式:推理的结构
同类的不同具体推理具有共同的结构,即推理形式。
- 所有金属都是导体,铜是金属 -> 铜是导体
- 所有鸟都是卵生的,企鹅是鸟 -> 企鹅是卵生的
- 所有A都是B,C是A -> C是B(共同的结构)
1.3 有效推理形式
-
所有金属都是导体,铜是金属 -> 铜是导体(正确)
-
所有A都是B,C是A -> C是B(有效推理形式)
-
所有金属都是导体,铜是导体 -> 铜是金属(不正确)(反例:碳是导体)
-
所有A都是B,C是B -> C是A(无效推理形式)
有效推理形式
- 真前提通过有效推理形式只能得到真结论。
- 即:通过有效推理形式,从真前提不会得到假结论。
逻辑:研究推理、推理形式
1.4 逻辑学的特点
- 抽象性
- 应用性
- 工具性
所有的科学在某种意义上都是某一方面的抽象
数理逻辑的公理系统中:符号只是符号本身,具有非常高的抽象性(也就是具有广泛应用性)
逻辑是一门高度抽象的学科,应用范围广。
欧姆定理 U = IR,通过实验得出。之后可用数学求出,可不再用实验求其中某一值。
数学是物理学和很多学科的工具。逻辑学也一样。
- 因A=B,故B=A 对
- 因A>B,故B>A 错
- 因A!=B,故B!=A 对
显然它们是正确,但“显然”不靠谱。在逻辑学上,若两对象关系是对称的,则位置可互换,否则,不行。
- 由A=B和B=C,可得A=C。
显然这是正确。在逻辑学上,等于号=具有传递的关系
1.5 逻辑学的基本准则
逻辑学研究对象范围很小:推理以及与推理有关的问题。
逻辑学的基本准则:
- 同一律 A就是A(譬如,跑题)
- (不)矛盾论 不矛盾论就是矛盾律,A不是非A,A和A的否定不能同时成立
- 排中律:A或A的否定必有一真,也就是没有中间态
矛盾论:A和A的否定不能同时成立,但是日常生活中,常常描述某事物同时是好是坏,如这事物指下雪。
正确的解读:
-
A:下雪是好事
-
A的否定:下雪是坏事
-
A1:下雪对冬小麦是好事
-
A2的否定:下雪对交通是坏事
A与A1是不同的
同一律,(不)矛盾论普遍适用
而排中律的适用范围是没有中间状态的,而二者互补的
例子:
- 张三是男生,张三是女生,违反矛盾论
- 张三不是男生,张三不是女生,违反排中律
日常生活中,符不符合逻辑,往往就逻辑学的基本准则几方面而言的。
1.6 逻辑学和其他学科的关系
逻辑学与以下学科的关系密切
- 哲学
- 数学
- 语言学
- 计算机科学
逻辑学最早是作为哲学的一部分存在的。
哲学,狭义理解,主要解决世界本原问题,物质的,还是精神的,是主观的,还是客观的。
本体论和认识论是哲学的核心。
广义理解,包括逻辑学,伦理学,美学
数理逻辑:用数学的方法、数学的语言、数学的工具研究推理。数理逻辑的成果为数学基础的研究服务。
语言是逻辑的外壳
语文老师会认为“整个大楼片漆黑,只有那个窗户灯火通明。”是不对的,因为这两个子句互为矛盾
同样,“中国有着世界上任何国家都没有的万里长城”也是不对的。
计算机科学 离散数学
最早的逻辑系统:二值,是与不是
推理:演绎和归纳
- 演绎:从一般到个别
- 归纳:从个别到一般
计算机为未做到归纳,但能做到演绎
归纳逻辑它的一个任务是要把我们所做的具体的归纳,要给出归纳的有效推理形式。
1.7 关于本课程《逻辑学概论》
传统逻辑还是数理逻辑?
- 传统逻辑:古典逻辑 古希腊亚里士多德为代表。
- 数理逻辑:现代逻辑 西方以莱布尼茨为创始人。
课程内容:数理逻辑的基础部分和传统逻辑的常用部分。
数理逻辑:不涉及任何一门高等数学的具体内容。
通过具体的推理了解:逻辑的精神、逻辑的方法、逻辑的思路。
第2讲 逻辑学的产生与发展
2.1 中国古代逻辑思想(上)
逻辑学的产生和发展
了解逻辑学的思路、精神、方法
世界三大逻辑传统:
- 中国
- 印度
- 希腊
中国先秦时代的逻辑思想:春秋战国,百家争鸣
中国古代逻辑思想不像希腊那样单纯研究推理,而是渗透在,贯穿在对于其他许多问题的研究与论述当中。
孔子为主要代表
子日:觚不觚,觚哉!觚哉!————《论语.雍也篇》(觚:用来喝酒的青铜具)
子日:必也正名乎! …名不正则言不顺,言不顺则事不成,事不成则礼乐不兴,礼乐不兴则刑罚不中,刑罚不中则民无所措手足。故君子名之必可言也,言之必可行也。————《论语.子路篇》(推理)
白马非马
日:“马非马,可乎?”
日:“可。”
日:“何哉?”
日: “马者所以命形也。白者所以命色也。命色者非命形也,故日白马非马。”…
日:“求马,黄、黑马皆可致。求白马,黄、黑马不可致。”
————公孙龙子《白马论》
- 传统逻辑:日常语言
- 数理逻辑:人工语言
例如日常语言的“是”有多种含义(“白马非马”的例子),需要更精准语言进行描述
2.2 中国古代逻辑思想(中)
庄子与惠子游于濠梁之上。庄子日:“鲦鱼出游从容,是鱼之乐也。”
惠子日:“子非鱼,安知鱼之乐?”(安:哪里?怎么?惠子的“安”是指“怎么”)
庄子日:“子非我,安知我不知鱼之乐?”
惠子日:“我非子,固不知子矣;子固非鱼也,子之不知鱼之乐,全矣。”
庄子日:“请循其本。子日‘汝安知鱼乐’云者,既已知吾知之而问我,我知之濠上也。”(庄子以“安”作为“哪里”进行回答,违反逻辑学的基本准则的同一律)
————《庄子.外篇.秋水第十七》
楚人有鬻盾与矛者,誉之日:“吾盾之坚,物莫能陷也。”又誉其矛日:“吾矛之利,于物无不陷也。”或日,“以子之矛陷,子之盾何如?”其人弗能应也。
不可陷之盾与无不陷之矛,不可同世而立。(说明矛盾律的原理)
————《韩非子.难一》
2.3 中国古代逻辑思想(下)
类比(濠梁之辩),递推(孔子的正名)作为推理手段
墨家
前期墨家:墨家创始人墨翟(墨子,约公元前476-前390)本人在世时所组成的学派。
后期墨家:墨翟去世后由其弟子所组成的学派。
《墨子》:《墨经》(《墨辩》)
《墨经》:经上、经下、经说上、经说下、大取、小取。
知识的来源:亲知(我直接感受到的),闻知(别人告诉我的),说知(这的“说”是指推理)。
知识的内容:名知(如知道梧桐树的名字),实知(如知道梧桐树的具体事物),合知(如知道梧桐树的名字和它具体事物),为知(实践,如怎么保护它)。
提出比较完整的逻辑体系,但不是逻辑学的名著。
夫辩者,将以明是非之分,审治乱之纪,明同异之处,察名实之理,处利害,决嫌疑焉。(推理很重要)
以名举实,以辞抒意,以说出故。
————《墨经.小取》
- 以名举实:用不同的名去对应不同的实(概念)。(命题)
- 以辞抒意:用句子表达一个意思。(判断)
- 以说出故:用推理可以知道事物的原因。(推理)
为什么逻辑学主要在先秦时期发展?百家争鸣
后秦时期主要以儒家思想为主(怎么修身齐家治国平天下,也就是社会科学和人文科学方面比较看重),逻辑学没有太大的成就。
2.4 印度古代逻辑
古代论辩术(公元前5世纪一前3世纪)
正理论
因明
佛教逻辑:因明
- 创始人:龙树(约2-3世纪间)
- 陈那(约425-495) :开创新因明,《因明正理门论》、《集量论》
- 商羯罗主(5世纪):《因明入正理论》
- 宗,因,喻
佛教有五明:
- 声明
- 医方明
- 因明
- 内明
- 工巧明
因明的三支论式
- 宗:此山有火
- 因:因有烟故
- 喻:凡有烟均有火,如厨房(同喻)。凡无烟均无火,如湖(反喻)。
古五支论式:宗、因、