数值分析C++实现用牛顿(Newton)迭代法求分f(x)=0在x0附近的根

用牛顿(Newton)迭代法求分f(x)=0在x0附近的根

首先引自百度百科的牛顿迭代法的定义:
在这里插入图片描述

算法描述:
(1)任取迭代初始值X0
(2)计算x1= x0-f’(x0)/f’(x0);
(3)判断收敛性:如果|x1 -x0|<ε或者|f(x1)|<ε
则算法收敛,停止计算,输出近似解x1
(4)令x0=x1,返回第二步
源程序代码及运行结果截图

#include<iostream>
using namespace std;
/*
@param x :获取自变量x,y对应的函数值
*/
float getNewTonFunction(float x)
{

	return x*x*x -x -1.0f;
}
/*
@param x :获取自变量x对应的导函数值
*/
float getgetNewTonDerivativeFunction(float x)
{

	return 3.0f*x * x - 1.0f;
}
/*
@param x0 :开始迭代求跟的初始值
@param e :精确度
*/
float getNewTonIterativeMethodValue(float x0,float e) 
{
	while (true)
	{
		//获取x1的迭代值
		float x1 = x0 - getNewTonFunction(x0) / getgetNewTonDerivativeFunction(x0);
		//获取x1-x0的绝对值
		//获取x1对应的函数的绝对值
		float tol = abs(x1-x0);
		float funtionValue = abs(getNewTonFunction(x1));
		//判断是否满足条件的近似解
		if (tol <e || funtionValue < e)
		{
			return  x1;
		}
		//重新赋值迭代
		x0 = x1;
	}
	return 0.0f;
}

int main()
{
	//测试数据
	float answer = getNewTonIterativeMethodValue(1.5f, 1e-8);
	cout << "x^3-x-1的近似根为:" << answer << endl;
	system("pause");
	return 0;
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陌意随影

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值