用牛顿(Newton)迭代法求分f(x)=0在x0附近的根
首先引自百度百科的牛顿迭代法的定义:
算法描述:
(1)任取迭代初始值X0
(2)计算x1= x0-f’(x0)/f’(x0);
(3)判断收敛性:如果|x1 -x0|<ε或者|f(x1)|<ε
则算法收敛,停止计算,输出近似解x1
(4)令x0=x1,返回第二步
源程序代码及运行结果截图
#include<iostream>
using namespace std;
/*
@param x :获取自变量x,y对应的函数值
*/
float getNewTonFunction(float x)
{
return x*x*x -x -1.0f;
}
/*
@param x :获取自变量x对应的导函数值
*/
float getgetNewTonDerivativeFunction(float x)
{
return 3.0f*x * x - 1.0f;
}
/*
@param x0 :开始迭代求跟的初始值
@param e :精确度
*/
float getNewTonIterativeMethodValue(float x0,float e)
{
while (true)
{
//获取x1的迭代值
float x1 = x0 - getNewTonFunction(x0) / getgetNewTonDerivativeFunction(x0);
//获取x1-x0的绝对值
//获取x1对应的函数的绝对值
float tol = abs(x1-x0);
float funtionValue = abs(getNewTonFunction(x1));
//判断是否满足条件的近似解
if (tol <e || funtionValue < e)
{
return x1;
}
//重新赋值迭代
x0 = x1;
}
return 0.0f;
}
int main()
{
//测试数据
float answer = getNewTonIterativeMethodValue(1.5f, 1e-8);
cout << "x^3-x-1的近似根为:" << answer << endl;
system("pause");
return 0;
}