1.Docker下code-server,python环境配置

1.安装docker,win10采用cmd命令安装,

start /w "" "Docker Desktop Installer.exe" install --installation-dir=D:\Docker  ,安装到d盘指定位置

2.拉取code-server镜像,docker-compose.yml文件中挂载(注意coder)

        volumes:
          - /d/Docker_hub/code_server/project:/home/coder/project
          - /d/Docker_hub/code_server/.config:/home/coder/.config

3.启动后,安装中文、python插件

4.现在docker还是没有安装python,先换源,注意Debian12源不在/etc/apt/sources.list,而是在/etc/apt/sources.list.d/debian.sources

 换源命令:

sed -i 's@deb.debian.org@mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/debian.sources

sed -i 's@deb.debian.org@mirrors.aliyun.com@g' /etc/apt/sources.list.d/debian.sources

5.更新源,安装python

sudo apt-get update

sudo apt-get install python3

6.配置python虚拟环境

sudo apt install python3.11-venv
python3 -m venv .venv
 . .venv/bin/activate

 . .venv/bin/activate 激活虚拟环境

7.给pip3换源

在code server 新建终端

配置~/.pip/pip.conf,没有这个文件就新建,需新建~/.pip目录,在touch pip.conf

vi ~/.pip/pip.conf

复制:

[global]
index-url = http://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com

:wq退出vi

### 如何在 Code-Server 中设置和使用 Python3 #### 安装 Python3 和创建虚拟环境 为了确保不同项目能够独立管理依赖项,在 `code-server` 环境中推荐为每个项目单独创建并激活对应的 Python 虚拟环境。具体操作如下: 对于基于 Debian 或 Ubuntu 的 Linux 发行版,可以安装最新版本的 Python 并通过 pip 工具来构建新的虚拟环境[^3]。 ```bash sudo apt update && sudo apt upgrade -y sudo apt install python3.11 python3-pip python3.11-venv -y ``` 接着,在目标项目的根目录下执行以下命令以初始化一个新的虚拟环境 `.venv`: ```bash python3 -m venv .venv source .venv/bin/activate ``` 此时终端提示符前缀应显示 `(venv)` 表明当前工作于该虚拟环境中。在此模式下安装任何包都将仅限于此特定环境下而不影响全局解释器或其他项目。 #### 配置 VSCode 使用正确的 Python 解释器 为了让 Visual Studio Code (即 code-server) 正确识别所选的 Python 版本及其关联库文件路径,需调整 IDE 设置指向新建立好的虚拟环境中的 Python 可执行文件位置。这通常位于 `<project-root>/.venv/bin/python`. 可以通过图形界面完成此设定:打开 Command Palette (`Ctrl+Shift+P`) 输入 "Python Select Interpreter", 之后选择对应选项即可;也可以手动编辑 workspace settings.json 文件加入相应配置条目[^1]: ```json { "python.pythonPath": "${workspaceFolder}/.venv/bin/python" } ``` 另外一种方法是在启动 container 时就指定好默认使用的 Python 版本链接,这样即使不额外配置也能正常调用到期望的解释器版本[^2]。 ```bash sudo ln -s /usr/bin/python3 /usr/bin/python ``` 但是需要注意的是这种方法会影响到整个系统的 Python 默认行为,因此建议优先考虑前面提到过的针对单个项目的方式来进行隔离化处理。 #### Docker 下的最佳实践 当利用 Docker 来部署带有 Anaconda 或 Miniconda 的 code-server 实例时,则可以在镜像内部预先准备好所需的开发工具链以及必要的扩展插件,并且按照官方文档指导正确挂载宿主机上的源码仓库至容器内适当的位置以便实时同步修改后的代码变更[^4]. ```dockerfile FROM continuumio/miniconda3 RUN conda create --name myenv python=3.9 COPY ./app /home/coder/project/app WORKDIR /home/coder/project/app CMD ["tail", "-f", "/dev/null"] ``` 上述示例展示了如何基于 ContinuumIO 提供的基础镜像快速搭建支持多语言编程(含 Python)的工作区模板,其中包含了创建名为 `myenv` 的 Conda 环境的过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值