条件随机场(CRF)总结

条件随机场(CRF)是一种概率图模型,特别适用于序列标注问题。CRF的特点在于其马尔科夫性,即每个节点的条件概率只与其相邻节点有关。线性链条件随机场是最常见的形式,其概率可以通过特征函数和权重参数来表示。前向-后向算法用于计算给定输入序列的条件概率和期望值,而学习算法如极大似然估计用于估计模型参数。预测算法如维特比算法则用于找到最可能的输出序列。
摘要由CSDN通过智能技术生成

简介

条件随机场(CRF)是给定一组输入随机变量的条件下另一组输出随机变量的条件概率分布。

1.概念引入
  • 概率图模型
    概率图模型是由图表示的概率分布。无向图G=(V,E)表示概率分布P(Y),节点v∈V表示一个随机变量 YV ;边e∈E表示随机变量之间的概率依存关系。

  • 成对马尔科夫性
    u和v是G中任意两个没有边连接的节点,其他所有节点为O。成对马尔科夫性是指给定随机变量组 YO 的条件下随机变量 Yu Yv 是条件独立的,即

    P(Yu,Yv|YO)=P(Yu|YO)P(Yv|YO)

  • 局部马尔科夫性
    v是G中任意一点,W是与v有边连接的所有节点,O是v,W以外的其他所有节点。局部马尔科夫性是指给定 YW 的条件下 Yv YO 是独立的,即

    P(Yv,YO|YW)=P(Yv|YW)P(YO|YW)

  • 全局马尔科夫性
    A,B是G中被C分开的任意节点集合。全局马尔科夫性是指给定 YC 条件下 YA YB 是条件独立的,即

    P(YA,YB|YC)=P(YA|YC)P(YB|YC)

  • 概率无向图模型
    如果联合概率P(Y)满足成对、局部或者全局马尔科夫性,就称该联合概率分布为无向图模型,或者马尔科夫随机场。最大特点:易于因子分解。

  • 团与最大团
    无向图G中任何两个节点都有边连接的节点子集称为团(clique)。若不能再加进一个节点使团更大,称该团为最大团。

  • 无向图模型的因子分解(factorization)
    C为G上最大团,P(Y)可以写作图中所有最大团C上的函数 ΨC(YC) 的乘积形式,即

    P(Y)=1ZcΨC(YC)

    其中,Z是归一化因子, Z=rcΨC(YC) ΨC(YC) 称为势函数,通常定义为指数函数:
    ΨC(YC)=exp{ E
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值