在机器学习中我们训练模型后,需要把模型保存到本地,这里我们采用joblib来保存
from sklearn.externals import joblib
#保存训练模型
def Save_Model(self, model, filepath):
joblib.dump(model, filename=filepath)
def Decision_Tree_classifier(self,x_train,y_train,max_depth=None,min_samples_split=2,min_samples_leaf=1):
Decision_Tree=tree.DecisionTreeClassifier(max_depth=max_depth,min_samples_split=min_samples_split,min_samples_leaf=min_samples_leaf)
Decision_Tree.fit(x_train,y_train)
self.save_model(Decision_Tree,os.path.join(c_config.UPLOAD_FOLODER,'model','Decision_Tree.m'))
return Decision_Tree
然后再通过 joblib.load 把模型加载回来
def Load_Model(self, filepath):
model = joblib.load(filepath)
return model