python利用joblib保存训练模型

在机器学习中我们训练模型后,需要把模型保存到本地,这里我们采用joblib来保存

from sklearn.externals import joblib
 
#保存训练模型
def Save_Model(self, model, filepath):
    joblib.dump(model, filename=filepath)
 
def Decision_Tree_classifier(self,x_train,y_train,max_depth=None,min_samples_split=2,min_samples_leaf=1):
    Decision_Tree=tree.DecisionTreeClassifier(max_depth=max_depth,min_samples_split=min_samples_split,min_samples_leaf=min_samples_leaf)
    Decision_Tree.fit(x_train,y_train)
    self.save_model(Decision_Tree,os.path.join(c_config.UPLOAD_FOLODER,'model','Decision_Tree.m'))
    return Decision_Tree


然后再通过 joblib.load 把模型加载回来

def Load_Model(self, filepath):
    model = joblib.load(filepath)
    return model


 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值