角谷定理说: 任何一个正整数,如果是偶数,则除以2,如果是奇数则乘以3再加1,如此反复,必能最终得到1。
这里不要求你证明这个定理,只需要验证10000以内的所有整数哪个经过了最长的步骤,最后才得到1, 并输出这个步骤。
这里不要求你证明这个定理,只需要验证10000以内的所有整数哪个经过了最长的步骤,最后才得到1, 并输出这个步骤。
比如对9,输出:
9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
/*
* 角谷定理说: 任何一个正整数,如果是偶数,则除以2,
* 如果是奇数则乘以3再加1,如此反复,必能最终得到1。
*
* 这里不要求你证明这个定理,
* 只需要验证10000以内的所有整数哪个经过了最长的步骤,
* 最后才得到1, 并输出这个步骤。比如对9,输出:
* 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
*/
import java.util.ArrayList;
import java.util.List;
public class StringTest {
public static void main(String[] args) {
List<String> lst = new ArrayList<String>();
int count = 0; // 循环中的计次
int count2 = 0;// 当前最长的计次
int num = 1;// 要确认的最长的角谷数
int num0 = 1;
int i = 1;
for (int j = 1; j < 10000; j++) {
count = 0;// 对每一个数先清零计次
i = num0;
while (i != 1) {
if (i % 2 == 0) {
i = i / 2;
} else if (i % 2 == 1) {
i = i * 3 + 1;
}
count++;
}
// 寻找最大次数的数,并把次数记录为count2,把这个数记为num
if (count > count2) {
count2 = count;
num = num0;
}
num0++;// 寻找下一个
}
lst.add(String.valueOf(num));
while (num != 1) {
if (num % 2 == 0) {
num = num / 2;
lst.add(String.valueOf(num));
} else if (num % 2 == 1) {
num = num * 3 + 1;
lst.add(String.valueOf(num));
}
count++;
}
System.out.println("10000以内的所有整数中,【"+lst.get(0)+"】经过了最长的步骤");
System.out.println("共经历【"+count2+"】步");
System.out.println("具体步骤如下:");
System.out.println(lst);
}
}
Conclusion
10000以内的所有整数中,【6171】经过了最长的步骤
共经历【261】步
具体步骤如下:
[6171, 18514, 9257, 27772, 13886, 6943, 20830, 10415, 31246, 15623, 46870, 23435, 70306, 35153, 105460, 52730, 26365, 79096, 39548, 19774, 9887, 29662, 14831, 44494, 22247, 66742, 33371, 100114, 50057, 150172, 75086, 37543, 112630, 56315, 168946, 84473, 253420, 126710, 63355, 190066, 95033, 285100, 142550, 71275, 213826, 106913, 320740, 160370, 80185, 240556, 120278, 60139, 180418, 90209, 270628, 135314, 67657, 202972, 101486, 50743, 152230, 76115, 228346, 114173, 342520, 171260, 85630, 42815, 128446, 64223, 192670, 96335, 289006, 144503, 433510, 216755, 650266, 325133, 975400, 487700, 243850, 121925, 365776, 182888, 91444, 45722, 22861, 68584, 34292, 17146, 8573, 25720, 12860, 6430, 3215, 9646, 4823, 14470, 7235, 21706, 10853, 32560, 16280, 8140, 4070, 2035, 6106, 3053, 9160, 4580, 2290, 1145, 3436, 1718, 859, 2578, 1289, 3868, 1934, 967, 2902, 1451, 4354, 2177, 6532, 3266, 1633, 4900, 2450, 1225, 3676, 1838, 919, 2758, 1379, 4138, 2069, 6208, 3104, 1552, 776, 388, 194, 97, 292, 146, 73, 220, 110, 55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1]