R语言做文本挖掘 Part4文本分类

Part3文本聚类里讲到过,分类跟聚类的简单差异。所以要做分类我们需要先整理出一个训练集,也就是已经有明确分类的文本;测试集,可以就用训练集来替代;预测集,就是未分类的文本,是分类方法最后的应用实现。

1.       数据准备

训练集准备是一个很繁琐的功能,暂时没发现什么省力的办法,根据文本内容去手动整理。这里还是使用的某品牌的官微数据,根据微博内容,我将它微博的主要内容分为了:促销资讯(promotion)、产品推介(product)、公益信息(publicWelfare)、生活鸡汤(life)、时尚资讯(fashionNews)、影视娱乐(showbiz),每个分类有20-50条数据,如下可看到训练集下每个分类的文本数目,训练集分类名为中文也没问题。

训练集为hlzj.train,后面也会被用作测试集。

预测集就是Part2里面的hlzj。

  1. hlzj.train <-read.csv("hlzj_train.csv",header=T,stringsAsFactors=F)  
  2. length(hlzj.train)  
[1] 2
  1. table(hlzj.train$type)  
fashionNews      life         product

      27            34            38

promotion    publicWelfare     showbiz

      45            22            36

  1. length(hlzj)  

[1] 1639

2.       分词处理

训练集、测试集、预测集都需要做分词处理后才能进行后续的分类过程。这里不再详细说明,过程类似于Part2中讲到的。训练集做完分词后hlzjTrainTemp,之前对hlzj文件做过分词处理后是hlzjTemp。然后分别将hlzjTrainTemp和hlzjTemp去除停词。

  1. library(Rwordseg)  
  2. hlzjTrainTemp <- gsub("[0-90123456789 < > ~]","",hlzj.train$text)  
  3. hlzjTrainTemp <-segmentCN(hlzjTrainTemp)  
  4. hlzjTrainTemp2 <-lapply(hlzjTrainTemp,removeStopWords,stopwords)  
  5. hlzjTemp2 <-lapply(hlzjTemp,removeStopWords,stopwords)  
3.      得到矩阵

在Part3中讲到了,做聚类时要先将文本转换为矩阵,做分类同样需要这个过程,用到tm软件包。先将训练集和预测集去除停词后的结果合并为hlzjAll,记住前202(1:202)条数据是训练集,后1639(203:1841)条是预测集。获取hlzjAll的语料库,并且得到文档-词条矩阵,将其转换为普通矩阵。

  1. hlzjAll <- character(0)  
  2. hlzjAll[1:202] <- hlzjTrainTemp2  
  3. hlzjAll[203:1841] <- hlzjTemp2  
  4. length(hlzjAll)  
[1] 1841
  1. corpusAll <-Corpus(VectorSource(hlzjAll))  
  2. (hlzjAll.dtm <-DocumentTermMatrix(corpusAll,control=list(wordLengths = c(2,Inf))))  
<<DocumentTermMatrix(documents: 1841, terms: 10973)>>

Non-/sparse entries: 33663/20167630

Sparsity           : 100%

Maximal term length: 47

Weighting          : term frequency (tf)

  1. dtmAll_matrix <-as.matrix(hlzjAll.dtm)  

4.      分类

用到knn算法(K近邻算法),这个算法在class软件包里。矩阵的前202行数据是训练集,已经有分类了,后面的1639条数据没有分类,要根据训练集得到分类模型再为其做分类的预测。将分类后的结果和原微博放在一起,用fix()查看,可以看到分类结果,效果还是挺明显的。

  1. rownames(dtmAll_matrix)[1:202] <-hlzj.train$type  
  2. rownames(dtmAll_matrix)[203:1841]<- c("")  
  3. train <- dtmAll_matrix[1:202,]  
  4. predict <-dtmAll_matrix[203:1841,]  
  5. trainClass <-as.factor(rownames(train))  
  6. library(class)  
  7. hlzj_knnClassify <-knn(train,predict,trainClass)  
  8. length(hlzj_knnClassify)  
[1] 1639
  1. hlzj_knnClassify[1:10]  
[1] product    product     product     promotion  product     fashionNews life      

 [8] product    product     fashionNews

Levels: fashionNews life productpromotion publicWelfare showbiz

  1. table(hlzj_knnClassify)  
hlzj_knnClassify

fashionNews    life   product     promotion   publicWelfare   showbiz

    40        869       88        535        28        79

  1. hlzj.knnResult <-list(type=hlzj_knnClassify,text=hlzj)  
  2. hlzj.knnResult <-as.data.frame(hlzj.knnResult)  
  3. fix(hlzj.knnResult)  

Knn分类算法算是最简单的一种,后面尝试使用神经网络算法(nnet())、支持向量机算法(svm())、随机森林算法(randomForest())时,都出现了电脑内存不够的问题,我的电脑是4G的,看内存监控时能看到最高使用达到3.92G。看样子要换台给力点的电脑了╮(╯▽╰)╭

在硬件条件能达到时,应该实现分类没有问题。相关的算法可以用:??方法名,的方式来查看其说明文档。

5.       分类效果

上面没有讲到测试的过程,对上面的例子来说,就是knn前两个参数都用train,因为使用数据集相同,所以得到的结果也是正确率能达到100%。在训练集比较多的情况下,可以将其随机按7:3或者是8:2分配成两部分,前者做训练后者做测试就好。这里就不再细述了。

在分类效果不理想的情况下,改进分类效果需要丰富训练集,让训练集特征尽量明显,这个在实际问题是一个很繁琐却不能敷衍的过程。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值