【LZOJ】逛街

【题目描述】

       小H正在一个 N 行 M 列的街区上闲逛。大H在某个时刻看见小H在位置 (A,B)(即街区的第 A 行 B 列的路口),恰好 T 秒后,大H又在位置 (X,Y)与小H撞了正着。大H并不知道在这 T 秒内小H是否曾经到过 (X,Y),他能确定的是现在小H在那里。
       设 P 为小H在 T 秒内从 (A,B) 走到(X,Y) 所能选择的路径总数,大H希望有一个程序来帮他计算这个值。每一秒内,小H会水平或垂直地移动 1 单位距离(小H总是在移动,不会在某秒内停在它上一秒所在的点)。街区上的某些地方有草坪,自然,小H不能走到草坪所在的位置,也不会走出街区。
       现在你拿到了一张整块街区的地形图,其中"." 表示平坦的街区,"*" 表示挡路的草坪。你的任务是计算出,在 T 秒内从(A,B)移动到(X,Y)的小H可能经过的路径有哪些。

【输入格式】

       第 1 行: 三个用空格隔开的整数:N,M,T。
       第 2…N+1 行: 第 i+1 行为 M 个连续的字符,描述了街区第 i 行各点的情况,保证字符是 “.” 和 “*” 中的一个。
       第 N+2 行: 四用空格隔开的整数:A,B,X,Y 。

【输出格式】

       输出 P,含义如题中所述。

【输入输出样例】

  • Input
4 5 6
...*.
...*.
.....
.....
1 3 1 5
  • Output
1

【数据限制】

       对于 100% 的数据,1≤N,M<≤100,1≤T<≤20.

【来源】

       Mr.he

题解

       动态规划与递推结合,根据输入存储01地图矩阵,0代表通路,1代表草坪,为了方便计算,防止下标越界,矩阵需要扩展到N+2行, M+2列。
       设dp[i][j]为从 (a,b) 走到 (i,j) 的路径数,则初始状态dp[a][b]=1。
       设从 (A,B) 走 i 步时的矩阵为 dpi[i][j],从 (A,B) 走 i+1 步时的矩阵为 dpi+1[i][j],则有关系 dpi+1[i][j] = x1*dpi[i-1][j] + x2*dpi[i][j-1] + x3*dpi[i+1][j] + x4*dpi[i][j+1]。其中 xi*dp[x][y] 的 xi 表示从 (x,y) 到 (i,j) 是否存在通路,是则为1。最终结果为 dpt[x][y] ,由于三维dp这里空间复杂度为 O ( T N M ) O(TNM) O(TNM),考虑到节省空间,本题解压缩掉维度T。

#include <iostream>
using namespace std;
int map[102][102];
int tmp[102][102];
int n,m,t;
void calc(){
	int tmp1[102][102];
	for(int i=1;i<=n;i++)
	for(int j=1;j<=m;j++){
		tmp1[i][j]=0;
		if(map[i][j]==1){
			tmp1[i][j]=0;
			continue;
		}
		int a,b,c,d;
		a=map[i-1][j]==0?1:0;
		b=map[i][j-1]==0?1:0;
		c=map[i][j+1]==0?1:0;
		d=map[i+1][j]==0?1:0;
		tmp1[i][j]=
			a*tmp[i-1][j]+
			b*tmp[i][j-1]+
			c*tmp[i][j+1]+
			d*tmp[i+1][j];
	}
	for(int i=0;i<=n;i++)
	for(int j=0;j<=m;j++)
	tmp[i][j]=tmp1[i][j];
}
int main()
{
	char chr;
 	cin>>n>>m>>t;
 	for(int i=0;i<=n+1;i++)
 	for(int j=0;j<=m+1;j++){
	 	if(i==0||j==0||i==n+1||j==m+1) map[i][j]=1;//走不通
	 	else{
		 	cin>>chr;
		 	if(chr=='.') map[i][j]=0;
		 	else map[i][j]=1;
		}
		tmp[i][j]=0;
	}
	int a,b,x,y;
	cin>>a>>b>>x>>y;
	tmp[a][b]=1;
	for(int i=0;i<t;i++){
		calc();
	}
	cout<<tmp[x][y];
	return 0;
}
/*
4 5 6
...*.
...*.
.....
.....
1 3 1 5
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cout0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值