【题目描述】
小H正在一个 N 行 M 列的街区上闲逛。大H在某个时刻看见小H在位置 (A,B)(即街区的第 A 行 B 列的路口),恰好 T 秒后,大H又在位置 (X,Y)与小H撞了正着。大H并不知道在这 T 秒内小H是否曾经到过 (X,Y),他能确定的是现在小H在那里。
设 P 为小H在 T 秒内从 (A,B) 走到(X,Y) 所能选择的路径总数,大H希望有一个程序来帮他计算这个值。每一秒内,小H会水平或垂直地移动 1 单位距离(小H总是在移动,不会在某秒内停在它上一秒所在的点)。街区上的某些地方有草坪,自然,小H不能走到草坪所在的位置,也不会走出街区。
现在你拿到了一张整块街区的地形图,其中"." 表示平坦的街区,"*" 表示挡路的草坪。你的任务是计算出,在 T 秒内从(A,B)移动到(X,Y)的小H可能经过的路径有哪些。
【输入格式】
第 1 行: 三个用空格隔开的整数:N,M,T。
第 2…N+1 行: 第 i+1 行为 M 个连续的字符,描述了街区第 i 行各点的情况,保证字符是 “.” 和 “*” 中的一个。
第 N+2 行: 四用空格隔开的整数:A,B,X,Y 。
【输出格式】
输出 P,含义如题中所述。
【输入输出样例】
- Input
4 5 6
...*.
...*.
.....
.....
1 3 1 5
- Output
1
【数据限制】
对于 100% 的数据,1≤N,M<≤100,1≤T<≤20.
【来源】
Mr.he
题解
动态规划与递推结合,根据输入存储01地图矩阵,0代表通路,1代表草坪,为了方便计算,防止下标越界,矩阵需要扩展到N+2行, M+2列。
设dp[i][j]为从 (a,b) 走到 (i,j) 的路径数,则初始状态dp[a][b]=1。
设从 (A,B) 走 i 步时的矩阵为 dpi[i][j],从 (A,B) 走 i+1 步时的矩阵为 dpi+1[i][j],则有关系 dpi+1[i][j] = x1*dpi[i-1][j] + x2*dpi[i][j-1] + x3*dpi[i+1][j] + x4*dpi[i][j+1]。其中 xi*dp[x][y] 的 xi 表示从 (x,y) 到 (i,j) 是否存在通路,是则为1。最终结果为 dpt[x][y] ,由于三维dp这里空间复杂度为
O
(
T
N
M
)
O(TNM)
O(TNM),考虑到节省空间,本题解压缩掉维度T。
#include <iostream>
using namespace std;
int map[102][102];
int tmp[102][102];
int n,m,t;
void calc(){
int tmp1[102][102];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
tmp1[i][j]=0;
if(map[i][j]==1){
tmp1[i][j]=0;
continue;
}
int a,b,c,d;
a=map[i-1][j]==0?1:0;
b=map[i][j-1]==0?1:0;
c=map[i][j+1]==0?1:0;
d=map[i+1][j]==0?1:0;
tmp1[i][j]=
a*tmp[i-1][j]+
b*tmp[i][j-1]+
c*tmp[i][j+1]+
d*tmp[i+1][j];
}
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
tmp[i][j]=tmp1[i][j];
}
int main()
{
char chr;
cin>>n>>m>>t;
for(int i=0;i<=n+1;i++)
for(int j=0;j<=m+1;j++){
if(i==0||j==0||i==n+1||j==m+1) map[i][j]=1;//走不通
else{
cin>>chr;
if(chr=='.') map[i][j]=0;
else map[i][j]=1;
}
tmp[i][j]=0;
}
int a,b,x,y;
cin>>a>>b>>x>>y;
tmp[a][b]=1;
for(int i=0;i<t;i++){
calc();
}
cout<<tmp[x][y];
return 0;
}
/*
4 5 6
...*.
...*.
.....
.....
1 3 1 5
*/