【洛谷P2054洗牌】AC代码(扩展欧几里得+二分快速幂+二分龟速乘)

博客详细介绍了扩展欧几里得算法和快速幂在解决线性同余方程中的应用,特别是在解决扑克牌洗牌问题中的策略。通过解释和展示算法模板,包括二分快速幂和龟速乘,博主引导读者理解如何利用这些算法求解特定的数学问题。此外,还讨论了快速乘的底层优化方法。
摘要由CSDN通过智能技术生成

题目描述

题目链接
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。

由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。

对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。

如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:

从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。

游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

输入格式

输入文件中有三个用空格间隔的整数,分别表示N,M,L(其中0<N≤10^10 ,0 ≤M≤10^10,且N为偶数)。

输出格式

单行输出指定的扑克牌的牌面大小。

输入输出样例

  • 输入 #1
6 2 3
  • 输出 #1
6
  • 说明/提示
0<N≤10^100≤M≤10^10,且N为偶数

前置知识

扩展欧几里得算法

贝祖定理

  • 若有整数a,b,c,在方程 a x + b y = c ax+by=c ax+by=c中,未知数x,y有整数解当且仅当c是gcd(a,b)的倍数,其中gcd(a,b)表示a,b的最大公因数。

欧几里得算法

  • gcd(a,b)=gcd(b,a%b)=…=gcd(d,0)=d

算法模板

int gcd(int a,int b){
	if(b==0) return a;
	else return gcd(b,a%b);
}

扩展欧几里得算法

  • 用于求解 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

算法思想
按照欧几里得算法展开方程 a x + b y = g c d ( a , b ) = g c d ( b , a % b ) = b x ′ + ( a % b ) y ′ = . . . = 1 d + 0 y = g c d ( a , b ) ax+by=gcd(a,b)=gcd(b,a\%b)=bx'+(a\%b)y'=...=1d+0y=gcd(a,b) ax+by=gcd(a,b)=gcd(b,a%b)=bx+(a%b)y=...=1d+0y=gcd(a,b)
其中 b x ′ + ( a % b ) y ′ = b x ′ + ( a − a / b ∗ b ) y ′ = a y ′ + ( x ′ − a / b ∗ y ′ ) b = a x + b y bx'+(a\%b)y'=bx'+(a-a/b*b)y'=ay'+(x'-a/b*y')b=ax+by bx+(a%b)y=bx+(aa/bb)y=ay+(xa/by)b=ax+by
x = x ′ , y = x ′ − a / b ∗ y ′ x=x',y=x'-a/b*y' x=x,y=xa/by
最终 g c d ( a , b ) x 0 + 0 y 0 = g c d ( a , b ) gcd(a,b)x_0+0y_0=gcd(a,b) gcd(a,b)x0+0y0=gcd(a,b),即 x 0 = 1 , y 0 ∈ R x_0=1,y_0\in R x0=1,y0R,所求得 x , y x,y x,y只是一组特解,通解为 ( x + k ∗ b / d , y − k ∗ b / d ) (x+k*b/d,y-k*b/d) (x+kb/d,ykb/d),推导方法略

算法模板

typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y){
	if(b==0){
		x=1;//gcd(a,b)x=gcd(a,b)
		y=0;//y随意
		return a;
	}
	ll gcd=exged(b,a%b,x,y),r;
	r=x;
	x=y;//x=y'
	y=r-a/b*y;//y=x'-a/b*y'
	return gcd;
}

用途

  1. 求乘法逆元
  2. 求解 a x + b y = c ax+by=c ax+by=c
  3. 求同余方程

乘法单位元:任何数乘以单位元等于这个数,显然乘法的单位元是1。
乘法逆元:任何数乘以他的乘法逆元等于单位元,比如2*0.5=1,0.5就是1的乘法逆元,但这不是我们需要的东西,我们需要的是在模运算下的整数乘法逆元。

二分快速幂与二分龟速乘

二分快速幂

二分幂
  • 二分幂,就是平常所用的幂运算化简方法,一般采用递归实现,不建议使用


a b = { a ∗ ( a 2 ) b 2 , b 为奇数 ( a 2 ) b 2 , b 为偶数 a^b=\left\{ \begin{array}{l} a*\left( a^2 \right) ^{\frac{b}{2}},b\text{为奇数}\\ \left( a^2 \right) ^{\frac{b}{2}},b\text{为偶数}\\ \end{array} \right. ab={a(a2)2b,b为奇数(a2)2b,b为偶数
转化为递归方程为
f ( a , b ) = { 1 , b = 0 a ∗ f ( a 2 , b 2 ) , b 为奇数 f ( a 2 , b 2 ) , b 为偶数 f\left( a,b \right) =\left\{ \begin{array}{l} 1,b=0\\ a*f\left( a^2,\frac{b}{2} \right) ,b\text{为奇数}\\ f\left( a^2,\frac{b}{2} \right) ,b\text{为偶数}\\ \end{array} \right. f(a,b)=1,b=0af(a2,2b),b为奇数f(a2,2b),b为偶数
算法模板

typedef long long ll;
ll efm(ll a,ll b,ll n){
	if(b==0) return 1;
	if(b&1) return a*efm(a*a%n,b>>1,n);
	else return efm(a*a%n,b>>1,n);
}
快速幂
  • 采用二分的思想利用二进制快速求解 a b a^b ab

算法思想
这里用b表示二进制数,
3 13 = 3 b 1101 = 3 1 ∗ b 1000 ∗ 3 1 ∗ b 100 ∗ 3 0 ∗ b 10 ∗ 3 1 ∗ b 1 3^{13}=3^{b1101}=3^{1*b1000}*3^{1*b100}*3^{0*b10}*3^{1*b1} 313=3b1101=31b100031b10030b1031b1
3 b 10 = ( 3 b 1 ) 2 3^{b10}=(3^{b1})^2 3b10=(3b1)2
3 b 100 = ( 3 b 10 ) 2 3^{b100}=(3^{b10})^2 3b100=(3b10)2
3 b 1000 = ( 3 b 100 ) 2 3^{b1000}=(3^{b100})^2 3b1000=(3b100)2
可以看出,每一项都是前一项的平方,原本需要计算13次的算法被优化到了计算4次,本算法时间复杂度是 O ( l o g 2 b ) O(log_2b) O(log2b)

算法模板

  • 通常,本算法的幂非常大,所求结果常需要取模
typedef long long ll;
ll ksm(ll a,ll b,ll n){//a^b%n
	ll ret=1;//累乘结果计算
	while(b>0){//非0次幂则计算
		if(b&1){//判断最低为是否为1,0不需要乘入
			ret=ret*a%n;
		}
		a=a*a%n;//由上述推导可得平方关系
		b>>=1;//b右移一位
	}
	return ret;
}

二分龟速乘

  • 对于快速幂算法的改进

二分快速幂算法存在的问题
在使用二分快速幂计算乘法时,尽管采用了%n来防止溢出,但仍然会有溢出现象,因为x*x%n,在x*x时就有可能溢出。

二分乘
  • 其实就是龟速乘的二分版本,一般用递归实现,不建议使用

乘法可以写成累加的形式,诸如
3 ∗ 5 = 3 + 3 ∗ 4 = 3 + ( 2 ∗ 3 ) ∗ 2 = 3 + 6 ∗ 2 = 3 + 12 3*5=3+3*4=3+(2*3)*2=3+6*2=3+12 35=3+34=3+(23)2=3+62=3+12
转化为递归方程为
f ( a , b ) = { 0 , b = 0 a + f ( 2 a , b 2 ) , b 为奇数 f ( 2 a , b 2 ) , b 为偶数 f\left( a,b \right) =\left\{ \begin{array}{l} 0,b=0\\ a+f\left( 2a,\frac{b}{2} \right) ,b\text{为奇数}\\ f\left( 2a,\frac{b}{2} \right) ,b\text{为偶数}\\ \end{array} \right. f(a,b)=0,b=0a+f(2a,2b),b为奇数f(2a,2b),b为偶数
算法模板

typedef long long ll;
ll gsc(ll a,ll b,ll n){
	if(b==0) return 0;
	if(b&1) return (a+gsc((a<<1)%n,b>>1))%n;
	else return gsc((a<<1)%n,b>>1)%n;
}
龟速乘

我们可以让x*y也变成类似于快速幂的运算形式,诸如
3 ∗ 5 = 3 ∗ b 101 = 3 ∗ ( 1 ∗ b 1 + 0 ∗ b 10 + 1 ∗ b 100 ) 3*5=3*b101=3*(1*b1+0*b10+1*b100) 35=3b101=3(1b1+0b10+1b100)
= 1 ∗ 3 ∗ b 1 + 0 ∗ 3 ∗ b 10 + 1 ∗ 3 ∗ b 100 =1*3*b1+0*3*b10+1*3*b100 =13b1+03b10+13b100
其中
3 ∗ b 10 = 3 ∗ b 1 + 3 ∗ b 1 3*b10=3*b1+3*b1 3b10=3b1+3b1
3 ∗ b 100 = 3 ∗ b 10 + 3 ∗ b 10 3*b100=3*b10+3*b10 3b100=3b10+3b10
不难发现,每一项都是前一项的二倍,由于本算法甚至慢于for循环相加,故得名龟速乘,时间复杂度为 O ( l o g 2 b ) O(log_2b) O(log2b)

算法模板

typedef long long ll;
ll gsc(ll a,ll b,ll n){
	ll ret=0;//累加结果计算
	while(b>0){//非0乘则计算
		if(b&1){//判断最低为是否为1,0不需要加入
			ret=(ret+a)%n;
		}
		a=(a+a)%n;//由上述推导可得平方关系
		b>>=1;//b右移一位
	}
	return ret;
}

快速幂的改进

  • 引入了龟速乘后,我们便可以改进快速幂算法
typedef long long ll;
ll ksm(ll a,ll b,ll n){
	ll ret=1;
	while(b>0){
		if(b&1){
			ret=gsc(ret,a,n);//修改位
		}
		a=gsc(a,a,n);//修改位
		b>>=1;
	}
	return ret;
}

题解

根据题目不难看出在 n n n张牌中第 x x x张牌经过 m m m伦洗牌后与所在位置 l l l满足:
x ∗ 2 m = l ( m o d   n + 1 ) x*2^m=l(mod\ n+1) x2m=l(mod n+1)
两种解法:

  1. 通过同余方程求逆元解答
  2. 直接求同余方程解

由于本文旨在学习更多的知识,采用逆元解法
这是线性同余方程,需要快速幂结合扩展欧几里得算法求解。
由于 a x = b ( m o d   n ) ax=b(mod\ n) ax=b(mod n),令 d = g c d ( a , n ) , t = n / d d=gcd(a,n),t=n/d d=gcd(a,n),t=n/d,则 x x x的最小正整数解为 x = ( x % t + t ) % t x=(x\%t+t)\%t x=(x%t+t)%t,在本题中 a a a为偶数, n + 1 n+1 n+1为奇数,则 t = n t=n t=n

快速幂+龟速乘代码

#include <iostream>
using namespace std;
typedef long long ll;
ll n,m,l,x,y;
ll gsc(ll x,ll m){
	ll ret=0;
	while(m){
		if(m&1) ret=(ret+x)%n;
		x=(x+x)%n;
		m>>=1;
	}
	return ret;
}
ll ksm(ll x,ll m){
	ll ret=1;
	while(m){
		if(m&1) ret=gsc(ret,x);
		x=gsc(x,x);
		m>>=1;
	}
	return ret;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	ll r=exgcd(b,a%b,x,y);
	ll c=x;
	x=y;
	y=c-a/b*y;
	return r;
}
int main(){
	scanf("%lld%lld%lld",&n,&m,&l);
	n++;
	ll k=ksm(2,m);
	exgcd(k,n,x,y);
	x=gsc(l,x%n+n);
	printf("%lld",x%n);
	return 0;
}

二分幂+二分乘代码

#include <iostream>
using namespace std;
typedef long long ll;
ll n,m,l,x,y;
ll efc(ll x,ll m){
	if(m==0) return 0;
	if(m&1) return (x+efc((x<<1)%n,m>>1))%n;
	else return efc((x<<1)%n,m>>1)%n;
}
ll efm(ll x,ll m){
	if(m==0) return 1;
	if(m&1) return efc(x,efm(efc(x,x)%n,m>>1));
	else return efm(efc(x,x)%n,m>>1);
}
ll exgcd(ll a,ll b,ll &x,ll &y){
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	ll r=exgcd(b,a%b,x,y);
	ll c=x;
	x=y;
	y=c-a/b*y;
	return r;
}
int main(){
	scanf("%lld%lld%lld",&n,&m,&l);
	n++;
	ll k=efm(2,m);
	exgcd(k,n,x,y);
	x=efc(l,x%n+n);
	printf("%lld",x%n);
	return 0;
}

扩展

快速乘

  • 可以按此代码实现快速乘
cin>>a>>b>>mod;
cout<<((a*b-(long long)((long double)a*b/mod)*mod+mod)%mod);
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cout0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值