#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=50005;
struct node{
int x,y;
}e[maxn],res[maxn];
int cmp(node a,node b)
{
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
int cross(node a,node b,node c)
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
int convex(int n)
{
int top = -1;
res[++top] = e[0];
res[++top] = e[1];
for(int i=2;i<n;i++)
{
while(top && cross(res[top],e[i],res[top-1])<=0)
top--;
res[++top] = e[i];
}
int midtop = top;
for(int i=n-2;i>=0;i--)
{
while(top>midtop && cross(res[top],e[i],res[top-1])<=0)
{
top--;
}
res[++top] =e[i];
}
return top;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int i,j,k,x,y,m;
for(i=0;i<n;i++)
scanf("%d%d",&e[i].x,&e[i].y);
sort(e,e+n,cmp);
m=convex(n);
int ans=0;
for(i=0;i<m;i++)
for(j=i+1;j<m;j++)
for(k=j+1;k<m;k++)
ans=max(ans,cross(res[j],res[k],res[i]));
printf("%.2lf\n",0.5*ans);
}
return 0;
}
/*
水平序的Andrew算法,求凸包。时间复杂度O(n)
最大三角形的三个顶点必定在凸包上,枚举即可。
向量积:a×b=x1*y2-x2*y1;当a×b>0时b在a的逆时针方向,a×b<0时b在顺时针方向,a×b=0时共线
|a×b|=|a|*|b|*sin<a,b>,可以求三角形面积。
*/