点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”
作者:Barış KaramanFollow
编译:ronghuaiyang
正文共:6867 字 16 图
预计阅读时间:20 分钟
导读
预测销量有很多的用处,这是一个时间序列的预测问题,我们可以使用传统的时序回归的方法,也可以使用机器学习,深度学习的方法,一起来了解一下。
前文回顾:
用机器学习来提升你的用户增长:第五步,预测客户的下一个购买日
第六部分: 预测销量
在本节之前,几乎所有的预测模型都是基于客户层面的(例如客户流失预测、下一个购买日等)。但有时候,我们从全局的角度看一看,也是有用的。通过考虑我们在客户方面的所做的努力,我们该如何影响销售?
时间序列预测是机器学习的主要组成部分之一。文献中有许多方法可以实现这一目的,如自回归综合移动平均(ARIMA)、季节自回归综合移动平均(SARIMA)、向量自回归(VAR)等。
在这篇文章中,我们将关注长短时记忆(LSTM)方法,如果你想使用深度学习,这是一种非常流行的方法。我们将在我们的项目中使用Keras来实现LSTM。
最后,了解未来的销售情况对我们的业务有什么帮助?
首先,它是一个基准。如果我们的战略没有改变的话,我们可以把它作为我们要达到的业务水平来使用。此外,我们可以在这个基准上计算新行为导致的增量值。
其次,它可以用于规划。我们可以通过预测来计划我们的需求和供应行为。这有助于找到更多的投资方向。
最后但并非最不重要的是,它是规划预算和目标的优秀指南。
现在我们开始写代码并建立我们的第一个深度学习模型。
我们模型的实现有3个步骤:
数据整理
数据变换,使其稳定并定义监督信号
建立LSTM模型并评估
数据整理
在本例中,我们使用来自Kaggle竞赛中的数据集。它包含每个商店和物品的每日销售额。
像往常一样,我们导入所需的库,并从CSV导入我们的数据:
from datetime import datetime, timedelta,date
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from __future__ import division
import warnings
warnings.filterwarnings("ignore")
import plotly.plotly as py
import plotly.offline as pyoff
import plotly.graph_objs as go
#import Keras
import keras
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from keras.utils import np_utils
from keras.layers import LSTM
from sklearn.model_selection import KFold, cross_val_score, train_test_split
#initiate plotly
pyoff.init_notebook_mode()
#read the data in csv
df_sales = pd.read_csv('sales_data.csv')
#convert date field from string to datetime
df_sales['date'] = pd.to_datetime(df_sales['date'])
#show first 10 rows
df_sales.head(10)
我们的数据看起来如下:
我们的任务是预测每月的总销售额。我们需要按月汇总数据并汇总sales列。
#represent month in date field as its first day
df_sales['date'] = df_sales['date'].dt.year.astype('str') + '-' + df_sales['date'].dt.month.astype('str') + '-01'
df_sales['date'] = pd.to_datetime(df_sales['date'])
#groupby date and sum the sales
df_sales = df_sales.groupby('date').sales.sum().reset_index()
在应用了上面的代码后,df_sales现在显示的是我们需要的总销售额:
数据变换
为了使我们的预测模型更容易和更准确,我们将进行以下变换:
如果数据不平稳,我们将把数据转换成平稳的
转换成有监督的适合LSTM模型的时间序列特征集合
按比例缩放数据
首先,我们如何检查数据是否是稳定的?我们把它画出来看看:
#plot monthly sales
plot_data = [
go.Scatter(
x=df_sales['date'],
y=df_sales['sales'],
)
]
plot_layout = go.Layout(
title='Montly Sales'
)
fig = go.Figure(data=plot_data, layout=plot_layout)
pyoff.iplot(fig)
每月的销售额图:
月销售额——不稳定很明显,它不是稳定的,在过去几个月里有上升的趋势。一种方法是获得当前月的销售与前一个月的差异,并在此基础上建立模型:
#create a new dataframe to model the difference
df_diff = df_sales.copy()
#add previous sales to the next row
df_diff['prev_sales'] = df_diff['sales'].shift(1)
#drop the null values and calculate the difference
df_diff = df_diff.dropna()
df_diff['diff'] = (df_diff['sales'] - df_diff['prev_sales'])
df_diff.head(10)
现在,我们有了所需要的dataframe来建模这个差别:
我们把这个差别画出来,然后看看是否稳定:
#plot sales diff
plot_data = [
go.Scatter(
x=df_diff['date'],
y=df_diff['diff'],
)
]plot_layout = go.Layout(
title='Montly Sales Diff'
)
fig = go.Figure(data=plot_data, layout=plot_layout)
pyoff.iplot(fig)
月销售额的差别 —— 稳定
完美!现在我们可以开始构建我们的特征集了。我们需要使用以前的月销售数据来预测下一个月。每个模型的回溯区间可能不同。对于这个例子,我们的值是12。
所以我们需要做的是创建从lag_1到lag_12的列,并使用**shift()**方法赋值:
#create dataframe for transformation from time series to supervised
df_supervised = df_diff.drop(['prev_sales'],axis=1)
#adding lags
for inc in range(1,13):
field_name = 'lag_' + str(inc)
df_supervised[field_name] = df_supervised['diff'].shift(inc)
#drop null values
df_supervised = df_supervised.dropna().reset_index(drop=True)
看看我们这个叫做df_supervised的新dataframe:
我们现在有了特征集。让我们更好奇地问这个问题:
我们的特征对于预测有多少用?
Adjusted R-squared就是答案。它告诉我们,我们的特征在多大程度上解释了标签的变化(在我们的示例中,差从lag_1到lag_12)。
让我们来看一个例子:
# Import statsmodels.formula.api
import statsmodels.formula.api as smf
# Define the regression formula
model = smf.ols(formula='diff ~ lag_1', data=df_supervised)
# Fit the regression
model_fit = model.fit()
# Extract the adjusted r-squared
regression_adj_rsq = model_fit.rsquared_adj
print(regression_adj_rsq)
上面的代码做了什么事情?
我们拟合了一个线性回归模型(OLS - Ordinary Least Squares),并计算了Adjusted R-squared。对于上面的例子,我们使用lag_1列来查看它在多大程度上解释了列diff中的变化。该代码的输出为:
lag_1解释了3%的变化。让我们看看其他的:
再增加四个特征,得分从3%提高到44%。
如果我们使用整个特征集,得分是多少:
结果非常好,分数是98%。现在,我们可以在对数据缩放之后自信地构建我们的模型。但是在缩放之前还有一个步骤。我们应该把数据分成训练集和测试集。作为测试集,我们选择了最近6个月的销售额。
#import MinMaxScaler and create a new dataframe for LSTM model
from sklearn.preprocessing import MinMaxScaler
df_model = df_supervised.drop(['sales','date'],axis=1)
#split train and test set
train_set, test_set = df_model[0:-6].values, df_model[-6:].values
我们使用MinMaxScaler,它对每个特征缩放到-1和1之间:
#apply Min Max Scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train_set)
# reshape training set
train_set = train_set.reshape(train_set.shape[0], train_set.shape[1])
train_set_scaled = scaler.transform(train_set)
# reshape test set
test_set = test_set.reshape(test_set.shape[0], test_set.shape[1])
test_set_scaled = scaler.transform(test_set)
构建LSTM模型
一切都准备好了,来建立我们的第一个深度学习模型。让我们从缩放后的数据集创建特征和标签:
X_train, y_train = train_set_scaled[:, 1:], train_set_scaled[:, 0:1]
X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])
X_test, y_test = test_set_scaled[:, 1:], test_set_scaled[:, 0:1]
X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])
我们拟合一下LSTM模型:
model = Sequential()
model.add(LSTM(4, batch_input_shape=(1, X_train.shape[1], X_train.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, nb_epoch=100, batch_size=1, verbose=1, shuffle=False)
上面的代码块打印出了模型是如何更新的,在每个epoch中误差是如何减少的:
我们来做一下预测,看看结果怎么样:
y_pred = model.predict(X_test,batch_size=1)
#for multistep prediction, you need to replace X_test values with the predictions coming from t-1
结果看起来很相似,但它并不能告诉我们多少信息,因为这些是差异的缩放后的数据。我们怎样才能看到实际的销售预测呢?
首先,我们需要做缩放的逆变换:
#reshape y_pred
y_pred = y_pred.reshape(y_pred.shape[0], 1, y_pred.shape[1])
#rebuild test set for inverse transform
pred_test_set = []
for index in range(0,len(y_pred)):
print np.concatenate([y_pred[index],X_test[index]],axis=1)
pred_test_set.append(np.concatenate([y_pred[index],X_test[index]],axis=1))
#reshape pred_test_set
pred_test_set = np.array(pred_test_set)
pred_test_set = pred_test_set.reshape(pred_test_set.shape[0], pred_test_set.shape[2])
#inverse transform
pred_test_set_inverted = scaler.inverse_transform(pred_test_set)
其次,我们需要构建具有日期和预测的dataframe。转换后的预测显示出了这种差异。我们计算预测的销售数字:
#create dataframe that shows the predicted sales
result_list = []
sales_dates = list(df_sales[-7:].date)
act_sales = list(df_sales[-7:].sales)
for index in range(0,len(pred_test_set_inverted)):
result_dict = {}
result_dict['pred_value'] = int(pred_test_set_inverted[index][0] + act_sales[index])
result_dict['date'] = sales_dates[index+1]
result_list.append(result_dict)
df_result = pd.DataFrame(result_list)
#for multistep prediction, replace act_sales with the predicted sales
输出:
太棒了!我们预测了未来六个月的销售数字。让我们在图中检查一下,看看我们的模型有多好:
#merge with actual sales dataframe
df_sales_pred = pd.merge(df_sales,df_result,on='date',how='left')
#plot actual and predicted
plot_data = [
go.Scatter(
x=df_sales_pred['date'],
y=df_sales_pred['sales'],
name='actual'
),
go.Scatter(
x=df_sales_pred['date'],
y=df_sales_pred['pred_value'],
name='predicted'
)
]
plot_layout = go.Layout(
title='Sales Prediction'
)
fig = go.Figure(data=plot_data, layout=plot_layout)
pyoff.iplot(fig)
实际值 vs 预测值:
对于一个简单的模型来说看起来很不错。
我们可以对这个模型做的一个改进是增加假期、休息时间和其他季节性影响。它们可以作为一个新特征简单地添加进去。
通过使用这个模型,我们有了基本的销售预测。但是我们如何预测促销对销售的影响呢?我们将在第7部分对此进行研究。
—END—
英文原文:https://towardsdatascience.com/predicting-sales-611cb5a252de
请长按或扫描二维码关注本公众号
喜欢的话,请给我个好看吧!