有监督对比学习的一个简单的例子

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”

因公众号更改了推送规则,记得读完点“在看”~下次AI公园的新文章就能及时出现在您的订阅列表中


作者:Dimitre Oliveira

编译:ronghuaiyang

导读

使用有监督对比学习来进行木薯叶病害识别。

论文链接:https://arxiv.org/abs/2004.11362

监督对比学习(Prannay Khosla等人)是一种训练方法,它在分类任务上优于使用交叉熵的监督训练。

这个想法是,使用监督对比学习(SCL)的训练模型可以使模型编码器从样本学习更好的类表示,这应该导致更好的泛化,并对于图像和标签的错误更具鲁棒性。

在本文中,你将了解什么是监督对比学习,以及监督对比学习是如何工作的,你会看到代码实现、一个应用程序的例子,最后将看到SCL和常规交叉熵之间的比较。

简而言之,SCL就是这样工作的:

在嵌入空间中将属于同一类的聚类点聚在一起,同时将来自不同类的样本簇分离。

有许多对比学习方法,如" 监督对比学习"," 自监督对比学习"," SimCLR "等,它们的比对部分都是共同的,它们学习来自一个域的样本和来自另一个域的样本的差别,但SCL以监督的方式利用标签信息完成这项任务。

不同的训练方法的结构

本质上,用监督对比学习对分类模型进行训练分为两个阶段:

  1. 训练编码器,学习生成输入图像的向量表示,这样,同类别图像的表示将比不同类别图像的表示更加相似。

  2. 在参数冻结的编码器上训练一个分类器。

例子

我们将把监督比较学习应用于Kaggle竞赛的数据集(Cassava Leaf Disease Classification),目的是将木薯叶的图像分类为5类:

0: Cassava Bacterial Blight (CBB)
1: Cassava Brown Streak Disease (CBSD)
2: Cassava Green Mottle (CGM)
3: Cassava Mosaic Disease (CMD)
4: Healthy

我们有四种疾病和一种健康的叶子,下面是一些图像样本:

来自比赛的木薯叶图像样本

数据有21397图像用于训练,大约有15000图像用于测试集。

实验设置

  • 数据:图像分辨率512 × 512像素。

  • 模型(编码器):EfficientNet B3。

你可以在这里查看:https://www.kaggle.com/dimitreoliveira/cassava-leaf-supervised-contrastive-learning

通常,对比学习方法能更好地工作,如果每个训练一个batch都有每个类的样本,这将有助于编码器学会对比不同域之间的差别,这意味着需要使用一个大的batch size,在这种情况下,我已经对每个类进行了过采样,所以每个batch的样本中每个类样本的概率大致相同。

数据集中的类别分布,过采样之后

数据增强通常有助于计算机视觉任务,在我的实验中,我也看到了数据增强的改进,这里我使用剪切,旋转,翻转,作物,剪切,饱和度,对比度和亮度的变化,它可能看起来很多,但图像没有和原始图像有太大不同。

增强后的数据样本

现在我们可以看看代码了

编码器

我们的编码器将是一个“EfficientNet B3”,但是在编码器的顶部有一个平均池化层,这个池化层将输出一个2048大小的向量,稍后它将用于检查编码器学习到的表示。

def encoder_fn(input_shape):
    inputs = L.Input(shape=input_shape, name=’inputs’)
    base_model = efn.EfficientNetB3(input_tensor=inputs, 
                                    include_top=False,
                                    weights=’noisy-student’, 
                                    pooling=’avg’)
 
    model = Model(inputs=inputs, outputs=base_model.outputs)
    return model

投影头

投影头位于编码器的顶部,负责将编码器嵌入层的输出投影到更小的尺寸中,在我们的例子中,它将2048维的编码器投影到128维的向量中。

def add_projection_head(input_shape, encoder):
    inputs = L.Input(shape=input_shape, name='inputs')
    features = encoder(inputs)
    outputs = L.Dense(128, activation='relu', 
                      name='projection_head', 
                      dtype='float32')(features)
    
    model = Model(inputs=inputs, outputs=outputs)
    return model

分类头

分类器头用于的可选的第二阶段训练,在SCL 训练阶段之后,我们可以去掉投影头,把这个分类器头加到编码器上,并使用常规的交叉熵损失来finetune模型,这样做的时候,需要冻结编码器层。

def classifier_fn(input_shape, N_CLASSES, encoder, trainable=False):
    for layer in encoder.layers:
        layer.trainable = trainable
        
    inputs = L.Input(shape=input_shape, name='inputs')
    
    features = encoder(inputs)
    features = L.Dropout(.5)(features)
    features = L.Dense(1000, activation='relu')(features)
    features = L.Dropout(.5)(features)
    outputs = L.Dense(N_CLASSES, activation='softmax', 
                      name='outputs', dtype='float32')(features)

    model = Model(inputs=inputs, outputs=outputs)
    return model

监督对比学习损失

这是SCL损失的代码实现,这里唯一的参数是temperature,“0.1”是默认值,但它可以调整,较大的temperatures可以导致类更分离,但较小的temperatures 有益于较长的训练。

class SupervisedContrastiveLoss(losses.Loss):
    def __init__(self, temperature=0.1, name=None):
        super(SupervisedContrastiveLoss, self).__init__(name=name)
        self.temperature = temperature

    def __call__(self, labels, ft_vectors, sample_weight=None):
        # Normalize feature vectors
        ft_vec_normalized = tf.math.l2_normalize(ft_vectors, axis=1)
        # Compute logits
        logits = tf.divide(
            tf.matmul(ft_vec_normalized, 
                      tf.transpose(ft_vec_normalized)
            ), temperature
        )
        return tfa.losses.npairs_loss(tf.squeeze(labels), logits)

训练

我将跳过Tensorflow样板训练代码,因为它非常标准,但是你可以在这里:https://www.kaggle.com/dimitreoliveira/cassava-leaf-supervised-contrastive-learning/notebook#Training-(supervised-contrastive-learning查看完整的代码。

第一个训练步骤 (编码器 + 投影头)

第一阶段的训练是用编码器+投影头,使用有监督对比学习损失。

构建模型

with strategy.scope(): # Inside a strategy because I am using a TPU
  encoder = encoder_fn((None, None, CHANNELS)) # Get the encoder
  encoder_proj = add_projection_head((None, None, CHANNELS),encoder)
  # Add the projection head to the encoderencoder_proj.compile(optimizer=optimizers.Adam(lr=3e-4), 
                    loss=SupervisedContrastiveLoss(temperature=0.1))

训练

model.fit(x=get_dataset(TRAIN_FILENAMES, 
                        repeated=True, 
                        augment=True), 
          validation_data=get_dataset(VALID_FILENAMES, 
                                      ordered=True), 
          steps_per_epoch=100, 
          epochs=10)

第二个训练步骤 (编码器 + 分类头)

对于训练的第二阶段,我们删除投影头,并在编码器的顶部添加分类器头,现在该编码器已经训练了权值。对于这一步,我们可以使用常规的交叉熵损失,像往常一样训练模型。

构建模型

with strategy.scope():
    model = classifier_fn((None, None, CHANNELS), N_CLASSES, 
                          encoder, # trained encoder
                          trainable=False) # with frozen weights    model.compile(optimizer=optimizers.Adam(lr=3e-4),
                  loss=losses.SparseCategoricalCrossentropy(), 
                  metrics=[metrics.SparseCategoricalAccuracy()])

训练

和之前几乎一样

model.fit(x=get_dataset(TRAIN_FILENAMES, 
                        repeated=True, 
                        augment=True), 
          validation_data=get_dataset(VALID_FILENAMES, 
                                      ordered=True), 
          steps_per_epoch=100, 
          epochs=10)

可视化输出向量

评估编码器的学习表示的一种有趣的方法是可视化特征嵌入的输出,在我们的例子中,它是编码器的最后一层,即平均池化层。在这里,我们将比较用SCL训练的模型和另一个用常规交叉熵训练的模型,你可以在:https://www.kaggle.com/dimitreoliveira/cassava-leaf-supervised-contrastive-learning中看到完整的训练。可视化是通过在验证数据集的嵌入输出上应用t-SNE生成的。

交叉熵的嵌入

对使用交叉熵训练的模型嵌入进行可视化

监督对比学习的嵌入

使用SCL训练出的模型的嵌入的可视化。

我们可以看到,两种模型在对每个类进行样本聚类的时候似乎都可以做的不错,但看下SCL模型训练出来的嵌入,每个类的簇相互之间的距离要更远,这就是对比学习的效果。我们也可以认为,这种行为将导致更好的泛化,因为类的判别边界会更清晰、如果去尝试画一下类别之间的边界,就可以得到一个很直观的理解。

总结

我们看到,使用监督对比学习方法的训练既容易实现又有效,它可以带来更好的准确性和更好的类表示,这反过来也可以产生更健壮的模型,能够更好地泛化。

—END—

英文原文:https://pub.towardsai.net/supervised-contrastive-learning-for-cassava-leaf-disease-classification-9dd47779a966

请长按或扫描二维码关注本公众号

喜欢的话,请给我个在看吧

  • 5
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
好的,下面是监督学习与非监督学习的详细区别对比表格: | | 监督学习 | 非监督学习 | |-------------|----------------------------------------------------------------|---------------------------------------------------------------| | 数据类型 | 监督学习使用标记数据,即每个样本都有明确的标签或输出值 | 非监督学习使用无标记数据,即每个样本没有明确的标签或输出值 | | 目标 | 监督学习目标是预测新数据的标签或输出值 | 非监督学习目标是发现数据中的隐藏结构或模式 | | 算法 | 监督学习算法包括决策树、支持向量机、神经网络等 | 非监督学习算法包括聚类、关联规则挖掘、降维等 | | 应用 | 监督学习应用于分类、回归、推荐系统等领域 | 非监督学习应用于数据分析、异常检测、特征提取等领域 | | 例子 | 监督学习例子包括图像分类、垃圾邮件过滤、股票预测等 | 非监督学习例子包括文本聚类、图像分割、数据降维等 | | 特征提取 | 监督学习需要重要特征,以提高准确性 | 非监督学习可以处理大量特征,无需关注其重要性 | | 数据量 | 监督学习需要大量标记数据,通常数据量较小 | 非监督学习可以处理大量无标记数据,通常数据量较大 | | 准确性评估 | 监督学习准确性可以明确地通过评估指标进行评估 | 非监督学习准确性通常难以明确地进行评估 | | 优缺点 | 监督学习准确性高,但需要大量标记数据,难以处理大量特征 | 非监督学习可以处理大量无标记数据,但准确性不如监督学习高 | 希望这个更详细的表格能够帮助你更好地理解监督学习和非监督学习的区别。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值