分形,是以非整数维形式充填空间的形态特征。1973年曼德勃罗B.B.Mandelbrot在法兰西学院讲课时首次提出了分维和分形几何的设想。
分形Fractal的原意是具有不规则、支离破碎等意义分形几何学是一门以非规则几何形态为研究对象的几何学。
分形的特质:
1、分形集都具有任意小尺度下的比例细节或者说它具有精细的结构。
2、分形集不能用传统的几何语言来描述它既不是满足某些条件的点的轨迹也不是某些简单方程的解集。
3、分形集具有某种自相似形式可能是近似的自相似或者统计的自相似。
4、一般分形集的“分形维数”严格大于它相应的拓扑维数。
5、在大多数令人感兴趣的情形下分形集由非常简单的方法定义可能以变换的迭代产生。
生活中有很多分形的实例,像西兰花,每一只可以根据相同的数学式子进行迭代计算出下一个点的变化,珊瑚表面的分形结构等,都是可以利用迭代的方法得到不同的图形,在建筑学中同样可以利用分形造出颇具艺术气息的建筑群等等,在分形中还有很多值得我们去细细挖掘的东西。
分形Fractal的原意是具有不规则、支离破碎等意义分形几何学是一门以非规则几何形态为研究对象的几何学。
分形的特质:
1、分形集都具有任意小尺度下的比例细节或者说它具有精细的结构。
2、分形集不能用传统的几何语言来描述它既不是满足某些条件的点的轨迹也不是某些简单方程的解集。
3、分形集具有某种自相似形式可能是近似的自相似或者统计的自相似。
4、一般分形集的“分形维数”严格大于它相应的拓扑维数。
5、在大多数令人感兴趣的情形下分形集由非常简单的方法定义可能以变换的迭代产生。
生活中有很多分形的实例,像西兰花,每一只可以根据相同的数学式子进行迭代计算出下一个点的变化,珊瑚表面的分形结构等,都是可以利用迭代的方法得到不同的图形,在建筑学中同样可以利用分形造出颇具艺术气息的建筑群等等,在分形中还有很多值得我们去细细挖掘的东西。