- 博客(5)
- 收藏
- 关注
原创 武科带算法复习
第三章5. 汉诺塔问题解:// 从a经过b移动n个盘子到cvoid hanoi(int n, int a, int b, int c) { hanoi(n-1, a, c, b); print(f"从{a}移1个到{c}"); hanoi(n-1, b, a, c);}6. 整数分划问题求一个函数P(n),返回n的不同分划数。例子:P(6)=6,因为有如下分划:65+14+23+32+2+21+1+1+1+1+1解:设函数Q(a,b),表示a的所有加
2021-06-25 23:27:07 481
原创 吴恩达机器学习笔记 第二课
符号表示假设h(x):将输入映射到输出的函数,学习的目标是得出该函数。训练集X:输入矩阵(设计矩阵,design matrix),x表示一个训练例列 向量。训练集大小m:训练集合中有多少训练例,即X的列数。特征数n:每个训练例有多少特征,即X的行数(或行数减一,见后文)。目标Y:训练例的答案参数θ:决定h的参数线性回归决定θ使得预测的误差(代价函数)最小。(假设x0=1)梯度下降不断更新θ,使得J不断趋近最小值的过程。α为步长系数...
2021-01-22 13:04:56 185
原创 吴恩达机器学习笔记 第三课
局部加权回归区别“参数”学习和“非参数”学习:参数化学习:算法的目的是习得参数具体的值,参数的数量不变。 非参数化学习:参数的数量随数据量(线性)增大,相当于最终结果保存了训练集。局部加权回归是一种非参数化学习,即保存训练数据,在预测新数据时,给接近输入的那些数据更高的权重,用它们来产生模型参数,再代入求解。精确来说:我们改变了代价函数,相较于普通的线性回归,加上了权重如果比较小(x是要预测的数据),则上式接近于1。如果比较大,则上式接近于0。可见,只有接近的数据会被用来做预
2021-01-22 13:04:48 147
原创 计算机视觉-模型学习和推理笔记 第四章
《Computer Vision - Model Learning and Inference》笔记第四章模型拟合(Model Fitting),就是确定模型的参数集合 θ\bm{\theta}θ。最大似然估计法(ML)为了数学上的简便性,假设每个数据点的选取都是独立的。即P(xi∣xj)=P(xi),i≠jP(x_i|x_j)=P(x_i),i\neq{j}P(xi∣xj)=P(xi),i=j 最大似然估计法的过程如下:求出每个数据点xix_ixi由模型(参数带进去算)产生的概率P
2021-01-12 13:07:57 279
原创 计算机视觉-模型学习和推理笔记 第六章
《Computer Vision - Model Learning and Inference》笔记前面五章都是数学,不想看第六章计算机视觉的问题是根据视觉数据 x\bold{x}x 推测现实状态 w\bold{w}w 的过程模型分为两种根据视觉数据求现实状态概率分布 Pr(w∣x)Pr(\bold{w}|\bold{x})Pr(w∣x) 的判别模型。根据现实状态求视觉数据概率分布 Pr(x∣w)Pr(\bold{x}|\bold{w})Pr(x∣w) 的生成模型。示例1:假设ww
2021-01-08 21:35:01 284
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人