[SCU 4519] 来签个到吧 (GCD + 期望)

SCU - 4519

盒子里有若干个球,每个球上面都有一个数字,数字各不相同
每次从中选两个数字 x,y,设 z= |xy|
若 z不在盒子中,则加入这个数
反复执行操作,直到无法再向盒子里加数
随机从盒子中摸出一个球,反复执行这个操作直到所有球都被摸出来过
问最后的期望步数


第一部分的构造:
设所有数的最大公因数是D
则所有数可以表示为 x=kD
所以所有的 |yx|=kD ,必然是 D的倍数
实际上这个相减的过程是更相减损法的再现
所以保证一定能构造出最大公因数 D
构造出 D后,用最大的数不断减去 D,
就能构造出小于最大数的所有 D的倍数

第二部分的期望:
dp[i] 为摸到 i个求的期望步数
dp[i]=N(i1)Ndp[i1]+(i1)Ndp[i]+1
移项整理后可得 dp[i]=dp[i1]+NN(i1)

最后的期望步数要加上第一部分构造时所用的步数

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <queue>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) (a*a)
int GCD(int a,int b){return b?GCD(b,a%b):a;};

const int maxn=1e5+10;
int N;
int inpt[maxn];
DBL dp[maxn];

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
    #endif
    int T;
    scanf("%d", &T);
    for(int ck=1; ck<=T; ck++)
    {
        scanf("%d", &N);
        CLR(dp);

        for(int i=0; i<N; i++) scanf("%d", &inpt[i]);
        sort(inpt,inpt+N);
        int gcd=inpt[0];
        for(int i=1; i<N; i++) gcd=GCD(gcd,inpt[i]);

        int tot=inpt[N-1]/gcd;
        if(!inpt[0]) tot++;
        dp[1]=1;
        for(int i=2; i<=tot; i++)
        {
            DBL down=tot-i+1,up=tot;
            dp[i]=dp[i-1]+up/down;
        }
        cout << (int)floor(dp[tot])+tot-N << '\n';
//      printf("%d\n", floor(dp[tot])+tot-N);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值