[HDU 5785] Interesting (Manacher+差分静态区间更新)

HDU - 5785

给定一个字符串 S ,定义三元组 (i,j,k),其中 1ij<k|S|
S[i...j] S[j+1...k] 为回文串时,代价为 i×k
求所有三元组的代价和


首先对 S 求一遍 manacher,然后就能求出所有回文半径
枚举 j,预处理 j 为回文串右端点时,其左端点 i的位置的和
同理为回文串左端点时,其右端点的 k 位置的和
i×k=i×k 即为所求答案

预处理的方式就是找到所有回文中心,对他回文半径内的点都加上它的贡献
这个区间更新看起来要用数据结构维护一下,实际上用差分的思想即可

在一段区间上加上一个数,只要在左端点加这个数,
在右端点加一减去这个数,最后扫一遍整个区间就能得出结果
同理,加上一个等差数列就额外开一个数组维护公差 d
进入区间的时候加上公差,退出区间的时候减掉公差
不同的是值在退出区间的时候,由于加的数和左端点不一样了
所以减去的是左端点加的数 x,在减去它在区间上变化的值 (rl+1)×d

这样就能在线性时间内预处理完,总的复杂度也是 (N)

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define SQR(a) ((a)*(a))
#define PCUT puts("\n----------")

const int maxn=1000000+10, MOD=1000000007;
struct Manacher
{
    char str[2*maxn];
    int mana[2*maxn], len, res;
    int solve(char*);
};
struct RangeUpdate
{
    char *debug;
    int siz;
    int arr[maxn], delt[maxn];
    void init(int _n) {siz=_n; CLR(arr); CLR(delt);};
    void add(int,int,int,int);
    void update();
};
char str[maxn];
Manacher M;
RangeUpdate L, R;

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
    #endif

    while(~scanf(" %s", str))
    {
        M.solve(str);
        int len=strlen(str);
        L.init(len); R.init(len);
        for(int i=2, p, v, r; i<M.len; i++)
        {
            p = (i-1)/2, v=p+1;
            if(M.str[i]!='#')
            {
                r = (M.mana[i]+1)/2;
                L.add(p, p+r-1, v, -1);
                R.add(p-r+1, p, v+r-1, -1);
            }
            else
            {
                r = (M.mana[i]-1)/2;
                L.add(p, p+r-1, v-1, -1);
                R.add(p-r, p-1, v+r-1, -1);
            }
        }
        L.update(); R.update();
        LL ans=0;
        for(int i=0; i<len-1; i++)
        {
            ans = (ans + (LL)L.arr[i]*R.arr[i+1]%MOD)%MOD;
        }
        printf("%lld\n", (ans+MOD)%MOD);
    }
    return 0;
}

int Manacher::solve(char _str[])
{
    int tlen = strlen(_str);
    res = 0;
    str[0]='!';
    for(int i=0; i<tlen; i++)
    {
        str[2*i+1] = '#';
        str[2*i+2] = _str[i];
    }
    str[2*tlen+1]='#';
    str[2*tlen+2]=0;
    len = 2*tlen+2;
    mana[1]=1;
    int p=1, rm=1;
    for(int i=2; i<len; i++)
    {
        mana[i] = 1;
        if(rm>i)
        {
            mana[i] = min(rm-i+1, mana[2*p-i]);
        }
        while(str[i-mana[i]] == str[i+mana[i]] ) mana[i]++;
        if(i+mana[i]-1 > rm)
        {
            rm = i+mana[i]-1;
            p=i;
        }
        if(res < mana[i]) res = mana[i]-1;
    }
    return res;
}

void RangeUpdate::add(int l, int r, int x, int d)
{
    arr[l] = (arr[l]+x)%MOD; arr[r+1] = (arr[r+1] - (x+(LL)(r-l+1)*d%MOD)%MOD) %MOD;
    delt[l] = (delt[l]+d)%MOD; delt[r+1] = (delt[r+1]-d)%MOD;
}

void RangeUpdate::update()
{
    int sum=0, nd=0;
    for(int i=0; i<siz; i++)
    {
        sum = (sum+arr[i])%MOD;
        arr[i] = sum;
        nd = (nd + delt[i])%MOD;
        sum = (sum + nd)%MOD;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值