问题:输入一棵二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中任意结点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。例如下面就是一棵平衡二叉树。
运用递归自底向上(从叶子结点到根结点)的思想实现的代码:
// ====================方法1(自根到叶子)====================
int TreeDepth(BinaryTreeNode* pRoot)
{
if(pRoot == NULL)
return 0;
int nLeft = TreeDepth(pRoot->m_pLeft);
int nRight = TreeDepth(pRoot->m_pRight);
return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
}
bool IsBalanced_Solution1(BinaryTreeNode* pRoot)
{
if(pRoot == NULL)
return true;
int left = TreeDepth(pRoot->m_pLeft);
int right = TreeDepth(pRoot->m_pRight);
int diff = left - right;
if(diff > 1 || diff < -1)
return false;
return IsBalanced_Solution1(pRoot->m_pLeft)
&& IsBalanced_Solution1(pRoot->m_pRight);
}
// ====================方法2(自叶子到根)====================
bool IsBalanced(BinaryTreeNode* pRoot, int* pDepth);
bool IsBalanced_Solution2(BinaryTreeNode* pRoot)
{
int depth = 0;
return IsBalanced(pRoot, &depth);
}
bool IsBalanced(BinaryTreeNode* pRoot, int* pDepth)
{
if(pRoot == NULL)
{
*pDepth = 0;
return true;
}
int left, right;
if(IsBalanced(pRoot->m_pLeft, &left)
&& IsBalanced(pRoot->m_pRight, &right))
{
int diff = left - right;
if(diff <= 1 && diff >= -1)
{
*pDepth = 1 + (left > right ? left : right);
return true;
}
}
return false;
}
// ====================测试代码====================
void Test(char* testName, BinaryTreeNode* pRoot, bool expected)
{
if(testName != NULL)
printf("%s begins:\n", testName);
printf("Solution1 begins: ");
if(IsBalanced_Solution1(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
printf("Solution2 begins: ");
if(IsBalanced_Solution2(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
}
// 完全二叉树
// 1
// / \
// 2 3
// /\ / \
// 4 5 6 7
void Test1()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, pNode6, pNode7);
Test("Test1", pNode1, true);
DestroyTree(pNode1);
}
// 不是完全二叉树,但是平衡二叉树
// 1
// / \
// 2 3
// /\ \
// 4 5 6
// /
// 7
void Test2()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, NULL, pNode6);
ConnectTreeNodes(pNode5, pNode7, NULL);
Test("Test2", pNode1, true);
DestroyTree(pNode1);
}
// 不是平衡二叉树
// 1
// / \
// 2 3
// /\
// 4 5
// /
// 6
void Test3()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode5, pNode6, NULL);
Test("Test3", pNode1, false);
DestroyTree(pNode1);
}
// 1
// /
// 2
// /
// 3
// /
// 4
// /
// 5
void Test4()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, pNode2, NULL);
ConnectTreeNodes(pNode2, pNode3, NULL);
ConnectTreeNodes(pNode3, pNode4, NULL);
ConnectTreeNodes(pNode4, pNode5, NULL);
Test("Test4", pNode1, false);
DestroyTree(pNode1);
}
// 1
// \
// 2
// \
// 3
// \
// 4
// \
// 5
void Test5()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, NULL, pNode2);
ConnectTreeNodes(pNode2, NULL, pNode3);
ConnectTreeNodes(pNode3, NULL, pNode4);
ConnectTreeNodes(pNode4, NULL, pNode5);
Test("Test5", pNode1, false);
DestroyTree(pNode1);
}
// 树中只有1个结点
void Test6()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
Test("Test6", pNode1, true);
DestroyTree(pNode1);
}
// 树中没有结点
void Test7()
{
Test("Test7", NULL, true);
}
int _tmain(int argc, _TCHAR* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
Test6();
Test7();
return 0;
}