AI学习课程推荐

人工智能知识点包含以下几大类:AI历史与现状、AI基本方法、基础数学、语言与编程、硬件知识。本文汇总网络上公开的各部分优质资料,梳理出一条人工智能自学路径,作为课程学习引导。

AI历史与现状

AI基本方法

基础数学

  1. 高维空间与线性代数
    1. 什么是矩阵
    2. 线性代数--向量是什么
    3. 线性代数--矩阵乘法与线性变换
    4. 矩阵的秩
    5. 特征向量与特征值
    6. 空间变换
  2. 微积分基础
    1. 微积分的本质
    2. 方向导数和梯度的直观理解
    3. 直观理解链式法则和乘积法则
    4. 微积分逻辑
    5. 傅里叶级数
    6. 卷积的两种可视化
  3. 优化理论基础
    1. 利用导数求极值
  4. 数理统计基础
    1. 概率论--总体与样本
    2. 贝叶斯定理--概率论直觉化
    3. 平均数,极差,方差
    4. 通俗统计学原理
    5. 幂律分布
    6. 随机变量
  5. 信息论基础
    1. 从概率角度理解熵
    2. 如何理解信息熵
    3. 打包理解“信息量”“比特”“熵”“KL散度”“交叉熵”

语言与编程

硬件知识

  • 计算&存储

AI、机器学习、深度学习之间的关系:

从集合的角度上看,AI > ML > DL,通俗的解释:深度学习是机器学习的其中一个分支,机器学习又是人工智能的一种技术而已。

  • 人工智能:是研究 、 开发用于模拟 、 延伸和扩展人的智能的理论 、 方法及应用系统的一门新的技术科学 。
  • 机器学习:专门研究计算机怎样模拟或实现人类的学习行为 以获取新的知识或技能重新组织已有的知识结构使之不断改善自身的性能 。 是人工智能的核心研究领域之一 。
  • 深度学习:源于人工神经网络的研究 多层感知器就是一种深度学习结构 。 深度学习是机器学习研究中的一个新的领域 它模仿人脑的机制来解释数据 例如图像 声音和文本

人工智能的四大要素:

数据、算法、场景、算力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值