人工智能知识点包含以下几大类:AI历史与现状、AI基本方法、基础数学、语言与编程、硬件知识。本文汇总网络上公开的各部分优质资料,梳理出一条人工智能自学路径,作为课程学习引导。
AI历史与现状
- 第一次AI浪潮:
- 第二次AI浪潮:
- 第三次AI浪潮:
AI基本方法
- 学习方法
- 计算机视觉
- 自然语言处理
- 时序数据处理
基础数学
- 高维空间与线性代数
- 微积分基础
- 优化理论基础
- 数理统计基础
- 信息论基础
语言与编程
- 数据结构
- python语言
- AI框架
硬件知识
- 计算&存储
AI、机器学习、深度学习之间的关系:
从集合的角度上看,AI > ML > DL,通俗的解释:深度学习是机器学习的其中一个分支,机器学习又是人工智能的一种技术而已。
- 人工智能:是研究 、 开发用于模拟 、 延伸和扩展人的智能的理论 、 方法及应用系统的一门新的技术科学 。
- 机器学习:专门研究计算机怎样模拟或实现人类的学习行为 以获取新的知识或技能重新组织已有的知识结构使之不断改善自身的性能 。 是人工智能的核心研究领域之一 。
- 深度学习:源于人工神经网络的研究 多层感知器就是一种深度学习结构 。 深度学习是机器学习研究中的一个新的领域 它模仿人脑的机制来解释数据 例如图像 声音和文本
人工智能的四大要素:
数据、算法、场景、算力