Xamarin.ios 绑定Objective-C libraries中容易出现的问题

This blog post is about producing better bindings of Objective-C libraries forXamarin.iOS and Xamarin.Mac . Read the series introduction to get a better idea why this is important and how it can save you time and headaches.

What can go wrong ?

Binding a selector using a correct [Export("")] attribute is only half the job. The .NET method signature must match the one defined in Objective-C. Xamarin.iOS does some magic, like converting string and NSString , but you still need to be careful. The most common mistakes are:

  • signed/unsigned types : this is often minor and you might want to disable the check on some (or even all) of them. CLS compliance means .NET developers prefer signed over unsigned integers (except for byte ). Apple APIs often use unsigned integers when a number cannot be negative. For example:
@property (nonatomic, readwrite) NSUInteger loops;
[Export ("loops")]
int Loops { get; set; }
// should be uint, easier (less casting) if an int
  • wrong types : a common case is a missing ref when the Objective-C API requires a pointer to a value, not the value itself. For example:
-(void) sphericalRadius:(float*) r zenith:(float*) zenith azimuth:(float*) azimuth;
[Export ("sphericalRadius:zenith:azimuth:")]
void GetSphere (float radius, float zenith, float azimuth);
// wrong, references to float (ref float) should have been used
  • wrong size : this often happens on structures, but it can also occurs when a type name is misleading (e.g. long is 32 bits in Objective-C, at least for 32bits archs like i386 and ARM, while it is 64 bits on .NET) or when common usage differs, as in this case:
-(id) initWithDuration:(ccTime)duration red:(GLshort)deltaRed green:(GLshort)deltaGreen blue:(GLshort)deltaBlue;
[Export ("initWithDuration:red:green:blue:")]
IntPtr Constructor (float duration, byte red, byte green, byte blue);
// wrong, we're almost wired for bytes when seeing RGB but it does not have to be!

What can we check for ?

Quite a lot. It’s possible to get an encoded signature for selectors. The earlierloops selector, for example, would return the “ I8@0:4 ” string value.

From it we can extract the return value ( I an unsigned int ) and all the parameters, e.g. self ( @ ) and the selector ( : ) are always present and there are no other parameters since it’s a getter. We also get the size of the parameters, which can be compared to the size of the managed types used—and they should alwaysmatch!

Using all of the above, we can test pretty closely if an Objective-C signature matches the defined .NET signature. Simple? Not quite.

Objective-C encoding for structures is quite detailed. However, their internal names won’t match the one being used in your bindings. You’ll need to help the fixture to map them by overriding its IsValidStruct method.

Why is this important ?

Signature mistakes are dangerous. Some APIs might (appear to) work, others will crash immediately (bad) or the crash will occur later (worse) because they will mess up the stack and cause memory corruption. Debugging such issues can be very time consuming, so your time is well invested in using this fixture.

How to fix issues ?

Fixing the .NET signature to match it’s Objectice-C peer is the most common case. The failure will tell you which parameter (or the return value) looks wrong. You have to confirm/fix this using the library’s documentation and/or it’s header files.

One notable (and uncommon) exception is the use of a variable number of arguments (e.g. var_list in Objective-C, params in C#). They are not part of the encoded signature, so once confirmed you can skip them by overriding theSkip(Type,MethodInfo,string) method.

As discussed earlier, you might also want to override Check(char,Type) to skip the signed/unsigned differences for integer types.

What’s missing ?

The encoded signature is not perfect. All NSObject parameters are encoded as ‘@ ‘ so we cannot detect if an NSData should have been used instead of NSDate . Since all objects are pointers, they all will be the same size ( IntPtr.Size ) so this will also not be noticed by the size check. Typos/errors, even if less common, are still possible.

This blog post concludes the five-part series on building better bindings for Xamarin.iOS and Xamarin.Mac. Thanks for reading!




原文链接:

http://blog.xamarin.com/producing-better-bindings-4-signatures/?utm_source=tuicool

http://www.tuicool.com/articles/6VvE73

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值