线性代数:为什么所有3x3对称矩阵构成的向量空间是6维的?(mit第11讲中的疑问)

3x3对称矩阵构成的向量空间被解释为6维,因为每个这样的矩阵可以表示为3个独立向量的外积,考虑到对称性的约束,这减少了维度。通常,3x3矩阵有9个元素,但对称性使得只有上三角形的元素是独立的,即3+2+1=6个独立元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

对应mit线性代数第11讲矩阵空间,秩1矩阵,小世界图第6-7分钟的讲解问题:3x3对称矩阵构成的向量空间为什么是6维的

二、解释

看了一些资料,发现这个国外的大哥讲得清楚
https://math.stackexchange.com/questions/2813446/what-is-the-dimension-of-the-vector-space-consisting-of-all-3-by-3-symmetric-mat
转成中文后如下在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值