排序算法之归并排序

归并排序也是效率较高的排序算法之一。其核心思想就是将两个已经排好序的序列合并成一个有序的序列。所以整个算法分成两部分,第一部分是分割,将一个长的无序的序列分解许多成只包含一个元素的序列。例如将序列:{12, 23, 8, 42, 15, 21}分解成{12},{23},{8},{42},{15},{21} 。第二部分是将分解好的序列进行归并。即先将序列归并成{12, 23},{8, 42},{15, 21},然后继续归并成{8, 12, 23, 42},{15, 21},最后得到结果{8, 12, 15, 21, 23, 42} 。
下面是代码(以升序为例):

void mergeSort(int unsort[], int start, int end){
    int length = end - start + 1, mid = (end + start)/2;
    if(length <= 1)
        return;
    //分割
    mergeSort (unsort, start, mid);
    mergeSort (unsort, mid + 1, end);

    //排序
    //只有两个元素时,直接在unsort的基础上进行交换元素即可
    if(length == 2){
        if(unsort[start] > unsort[end]){
            int temp = unsort[start];
            unsort[start] = unsort[end];
            unsort[end] = temp;
        }
        return ;
    }
    //有多个元素时,需要将两个序列进行归并,由于两个序列都是有序的,所以归并时可以不需要回溯直接沿着一个方向进行。
    int i = start, j = mid + 1, k = 0;
    int* temp = new int[length];

    while(i <= mid && j <= end){
        if(unsort[i] < unsort[j])
            temp[k++] = unsort[i++];
        else
            temp[k++] = unsort[j++];
    }

    while(i <= mid)
        temp[k++] = unsort[i++];

    while(j <= end)
        temp[k++] = unsort[j++];
    //将temp数组中的数值复制到unsort中
    i = start;
    j = 0;
    while(j < length){
        unsort[i++] = temp[j++];
    }
}

从上面的代码我们可以看出每次归并操作的时间复杂度都是O(n),将序列分解的时间复杂度是O(log(n)), 所以总的时间复杂度是O(n log(n)) 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值