归并排序也是效率较高的排序算法之一。其核心思想就是将两个已经排好序的序列合并成一个有序的序列。所以整个算法分成两部分,第一部分是分割,将一个长的无序的序列分解许多成只包含一个元素的序列。例如将序列:{12, 23, 8, 42, 15, 21}分解成{12},{23},{8},{42},{15},{21} 。第二部分是将分解好的序列进行归并。即先将序列归并成{12, 23},{8, 42},{15, 21},然后继续归并成{8, 12, 23, 42},{15, 21},最后得到结果{8, 12, 15, 21, 23, 42} 。
下面是代码(以升序为例):
void mergeSort(int unsort[], int start, int end){
int length = end - start + 1, mid = (end + start)/2;
if(length <= 1)
return;
//分割
mergeSort (unsort, start, mid);
mergeSort (unsort, mid + 1, end);
//排序
//只有两个元素时,直接在unsort的基础上进行交换元素即可
if(length == 2){
if(unsort[start] > unsort[end]){
int temp = unsort[start];
unsort[start] = unsort[end];
unsort[end] = temp;
}
return ;
}
//有多个元素时,需要将两个序列进行归并,由于两个序列都是有序的,所以归并时可以不需要回溯直接沿着一个方向进行。
int i = start, j = mid + 1, k = 0;
int* temp = new int[length];
while(i <= mid && j <= end){
if(unsort[i] < unsort[j])
temp[k++] = unsort[i++];
else
temp[k++] = unsort[j++];
}
while(i <= mid)
temp[k++] = unsort[i++];
while(j <= end)
temp[k++] = unsort[j++];
//将temp数组中的数值复制到unsort中
i = start;
j = 0;
while(j < length){
unsort[i++] = temp[j++];
}
}
从上面的代码我们可以看出每次归并操作的时间复杂度都是O(n),将序列分解的时间复杂度是O(log(n)), 所以总的时间复杂度是O(n log(n)) 。