线性模型

线性模型

一、基本形式

线性模型是一种有监督学习,它试图得到一个线性模型以尽可能准确地预测实际输出标记。 f(x)=w1x1+w2x2+...+wdxd+b 其中 x1 xd 为描述事例 x d个属性, w=(w1;w2;...;wd),w 可以看作每个属性的权重系数越大对于线性模型影响越大。 w b学得之后就可以确定模型。

二、线性回归

线性回归是处理回归任务最常用的算法之一。该算法的形式十分简单,它期望使用一个超平面拟合数据集。如果数据集中的变量存在线性关系,那么其就能拟合地非常好。给定数据集合 D= { (x1,y1),(x2,y2),...,(xm,ym) }这里具体 xi=(xi1;xi2;xi3;...xid) 其中 xi1 表示为第 i 个事例的第1个属性。现在目标就是确定w d ,基于均方差最小化来进行模型求解(最小二乘法)。

三、正则化

满足均方差最小的模型可能有多个,也就是得到了多个w值,那么在这样的情况下怎么选择一个合适 w <script type="math/tex" id="MathJax-Element-119">w</script>输出,将由学习算法的偏好决定,常见做法是引入正则化。正则化其实就是一种对过多回归系数采取惩罚以减少过拟合风险的技术。当然,我们还得确定惩罚强度以让模型在欠拟合和过拟合之间达到平衡。

三、参考代码

[ Linear Regression Example]

运行结果:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值