HDU 1568 Fibonacci

16 篇文章 0 订阅
9 篇文章 0 订阅

Fibonacci

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 423    Accepted Submission(s): 145


Problem Description
2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
 

Input
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
 

Output
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
 

Sample Input
0
1
2
3
4
5
35
36
37
38
39
40
 

Sample Output
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023
/*
 * 思路:要求斐波拉契数列的第n向的前4位数,如果直接按递推公式算肯定超时了
 * 通项公式:f(n) = (1/sqrt(5)){[(1+sqrt(5))/2]^n-[(1-sqrt(5))/2]^n}
 * 由于斐波拉契数列的第20项刚好是4位数,所以前20项可以单独用递推公式计算
 * 后面的项可以这样考虑
 * 两边取对数
 * log10(f(n))=log10(1/sqrt(5))+log10([(1+sqrt(5))/2]^n-[(1-sqrt(5))/2]^n)
 * 由于[(1-sqrt(5))/2]^n在n》=20时可以忽略不计,所以
 * log10(f(n))=log10(1/sqrt(5))+n*log10([(1+sqrt(5))/2])
 * f(n)=10^(log10(1/sqrt(5))+n*log10([(1+sqrt(5))/2]))
 * 由于10的任何次幂都是10的倍数
 * 所以f(n)的前4位值只与10^(log10(1/sqrt(5))+n*log10([(1+sqrt(5))/2]))的小数部分有关
 * 所以就。。。。开始写代码吧
 * 
 * */ 
 
 
 
 
import java.io.*; 
public class Main { 
 
    public static void main(String[] args) throws IOException { 
        StreamTokenizer in = new StreamTokenizer(new BufferedReader( 
                new InputStreamReader(System.in))); 
        int[] arr = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 
                610, 987, 1597, 2584, 4181, 6765 }; 
        int n; 
        while(in.nextToken()!=StreamTokenizer.TT_EOF){ 
            n = (int)in.nval; 
            if(n<=20){System.out.println(arr[n]);continue;} 
            double m = Math.log10(1.0/Math.sqrt(5))+n*Math.log10((1+Math.sqrt(5))/2); 
            double p = m-(long)m; 
            p = Math.pow(10, p); 
            while(p<1000)p*=10; 
            System.out.println((int)p); 
        } 
        System.out.flush(); 
    } 
 
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值