原反补码
学习这个知识点之前,我们先来看一个题目:写出10的二进制形式
答案及解读:
0b 0 0(23个) 0000 1010
10对应的类型为int,在计算机底层占4字节,需要32个比特位表示
其中最高位为符号位,0表示正数,1表示负数
剩下的31位,其中23位都为0,低8位为0000 1010 = 8 + 2 = 10
连到一起,结果为正整数10
思考:-10的二进制形式如何表示?
如果要表示负整数的二进制形式,则必须学习原码、反码、补码。
1)原码
就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小
10的原码:0 0(23) 0000 1010
-10的原码:1 0(23) 0000 1010
2)反码
-
正数的反码与其原码相同
-
负数的反码,在原码的基础上,保留符号位,其他位逐位取反
10的反码: 跟10的原码相同 0 0(23) 0000 1010
-10的反码: 拿到-10的原码, 1 0(23) 0000 1010
保留符号位其他位取反 1 1(23) 1111 0101
3)补码
-
正数的补码与其原码相同
-
负数的补码是在其反码的末位加1
10的补码: 跟10的原码相同 0 0(23) 0000 1010
-10的补码: 拿到-10的反码, 1 1(23) 1111 0101
在反码基础上加1 1 1(23) 1111 0110
特别注意:数据在计算机底层进行存储或运算,以补码方式进行!
案例展示:
模拟计算机底层进行运算:-10 + 10;
计算机底层通过补码进行运算,先获取-10补码:1 1(23) 1111 0110
+
再获取 10补码:0 0(23) 0000 1010
=
结果: 1【0 0(23) 0000 0000】
结果分析:两个int类型数据相加后结果值类型仍旧是int,其中int类型表示范围为4字节32个比特位,所以上述结果中第33位的那个1被自动抛弃,只保留低32位数值,0 0(23) 0000 0000,即 0。
所以:-10 + 10 == 0
课堂练习:
请写出-123的原、反、补码。