白嫖DeepSeek:一分钟完成本地部署AI

在这里插入图片描述

1. 必备软件

  1. LM-Studio 大模型客户端
  2. DeepSeek-R1 模型文件

LM-Studio 是一个支持众多流行模型的AI客户端,DeepSeek是最新流行的堪比GPT-o1的开源AI大模型。

2. 下载软件和模型文件

2.1 下载LM-Studio

在这里插入图片描述

官方网址:https://lmstudio.ai

打开官网,直接下载自己系统对应的版本,然后安装。

2.2 下载模型文件

在这里插入图片描述

官方网址:https://modelscope.cn/models

打开网址,探索deepseek-r1然后选择文件名带有gguf的大模型,进入模型文件后,

### DeepSeek 离线部署教程 对于希望在本地环境中运行DeepSeek模型的情况,通常需要考虑几个方面来完成离线部署。这不仅涉及到获取预训练好的模型权重文件,还包括配置相应的环境以及编写必要的启动脚本。 #### 准备工作 确保目标机器上已安装Python解释器,并建议创建虚拟环境用于隔离依赖项。接着通过`pip install torch transformers`命令安装PyTorch库和Hugging Face Transformers工具包[^4]。 #### 下载模型资源 由于网络访问受限,在执行离线部署前需预先下载所需的一切资源至内部存储设备。可以从公开渠道如GitHub仓库或特定平台提供的API接口处取得对应版本的DeepSeek模型架构定义与参数矩阵。注意保存路径规划以便后续加载操作能够顺利找到这些静态资产。 #### 配置环境变量 为了使程序能够在无互联网连接的情况下正常识别并调用本地存在的模型数据集,可能要设置一些操作系统级别的环境变量指向自定义目录位置。例如: ```bash export TRANSFORMERS_OFFLINE=1 export HF_DATASETS_CACHE="/path/to/local/cache" ``` 上述指令告知Transformers忽略在线查询而优先查找指定缓存区内的实体;同时关闭自动更新机制防止意外触发对外请求。 #### 编写启动代码 最后一步就是构建应用程序入口函数,这里给出一段简单的Python示范片段展示如何实例化一个基于DeepSeek的自然语言处理服务端点: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("/local/path/deepseek", local_files_only=True) model = AutoModelForCausalLM.from_pretrained("/local/path/deepseek", local_files_only=True) def generate_response(prompt_text): inputs = tokenizer(prompt_text, return_tensors="pt") outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 这段代码展示了怎样利用AutoTokenizer和AutoModelForCausalLM类从磁盘读取已经准备完毕的DeepSeek模型,并实现了基本的文字生成功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码站-老谭

来杯咖啡☕️~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值