数字三角形问题

问题描述

这里写图片描述

状态转移方程

这里写图片描述

代码实现

  • 方法1:效率低下
#include<iostream> 
#include<string.h>
#define maxn 1000 + 5
using namespace std;
int a[maxn][maxn];
int d[maxn][maxn];
int n;
int D (int i, int j) {
    return a[i][j] + (i == n ? 0 : max(D(i+1, j), D(i+1, j+1)));
} 

int main() {
    int i, j;
    for (; cin >> n && n;) {
        memset(d, 0, sizeof(d));
        for (i = 1; i <= n; i++) { //控制有多少层 
            for (j = 1; j <= i; j++) {
                cin >> a[i][j];
            }   
        }
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= i; j++) {
                d[i][j] = D(i, j);
            }
        }
        cout << d[1][1];  //注意最终结果的存储位置
    }       
}
  • 原因:
    这里写图片描述

  • 方法2: 倒过来,从树的底层开始思考:
    这里写图片描述

  • 方法3: 对于 方法1 进行改进,将已经计算过的 d[i][j] 进行保存:
#include<iostream> 
#include<string.h>
#define maxn 1000 + 5
using namespace std;
int a[maxn][maxn];
int d[maxn][maxn];
int n;
int D (int i, int j) {
    if (d[i][j] > 0) return d[i][j] ;  //在这里做了优化

    return d[i][j] = a[i][j] + (i == n ? 0 : max(D(i+1, j), D(i+1, j+1)));  //在这里对计算过的分支进行保存
} 

int main() {
    int i, j;
    for (; cin >> n && n;) {
        memset(d, -1, sizeof(d));  //注意这里初始化为-1,很关键 
        for (i = 1; i <= n; i++) { //控制有多少层 
            for (j = 1; j <= i; j++) {
                cin >> a[i][j];
            }   
        }

        for (j = 1; j <= n; j++) {
            d[n][j] = a[n][j];
        }

        for(i = n-1; i >= 1; i--) {
            for (j = 1; j <= i; j++) {
                d[i][j] = a[i][j] + max(d[i+1][j], d[i+1][j+1]);
            }   
        }

        cout << d[1][1];
    }   


}

参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值