第k大元素
给出数组 [9,3,2,4,8]
,第三大的元素是 4
给出数组 [1,2,3,4,5]
,第一大的元素是 5
,第二大的元素是 4
,第三大的元素是 3
,以此类推
这是一道非常重要的笔试题,思路有三:
1. 最直观的,就是排下序,取第k大的元素就行了。但是时间复杂度有点高, O(nlgn)
2.利用类似于快速排序中的分治法,每次找到首元素(随意,这里设为首元素)应该在的位置,如果找到了第k个位置上的元素,则返回。
3.上述方法的平均时间复杂度是 O(n), 但是必须要修改数组。 可以选择一个数据容器,每次保存前k小个数,使用小根堆来实现,每次比较一个新元素,查看它与小根堆的堆顶大小,如果比堆顶大的话,将堆顶元素poll,然后把这个新元素add进去,最后堆顶元素就是第k大元素了,可用红黑树来实现。
代码 思路2:
public int kthLargestElement(int k, int[] nums) {
if(k<0||k>nums.length){return 0;}
int pre = 0;
int last = nums.length-1;
int mid = patition(nums, pre, last);
while (mid!=k){
if(mid<k){
mid = patition(nums, mid, last);
}else{
mid = patition(nums, pre, mid);
}
}
return nums[mid];
}
public int patition(int[] arr, int pre, int last){
int pivot = arr[pre];
while (pre<last){
while(pre<last && arr[last]>=pivot){last--;}
arr[pre] = arr[last];
while (pre<last && arr[pre]<=pivot){pre++;}
arr[last] = arr[pre];
}
arr[pre] = pivot;
return pre;
}
代码 思路3:
public int top_K(int[] arr, int k){
PriorityQueue<Integer> pq = new PriorityQueue<>(k, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1-o2;
}
});
int i = 0;
for(;i<k;i++){
pq.add(arr[i]);
}
for(;i<arr.length;i++){
if(arr[i]>pq.peek()){
pq.poll();
pq.add(arr[i]);
}
}
return pq.peek();
}