洗牌

题目描述:
Eddy是个ACMer,他不仅喜欢做ACM题,而且对于纸牌也有一定的研究,他在无聊时研究发现,如果他有2N张牌,编号为1,2,3..n,n+1,..2n。这也是最初的牌的顺序。通过一次洗牌可以把牌的序列变为n+1,1,n+2,2,n+3,3,n+4,4..2n,n。那么可以证明,对于任意自然数N,都可以在经过M次洗牌后第一次重新得到初始的顺序。编程对于小于100000的自然数N,求出M的值

大致思路:

这个是看了详细的题解才会的……感觉完全想不到……

原始算法:
  我们把每个数逛来逛去最后又回家的过程叫做一个循环,循环中经过的位置个数叫做循环的长度。如N=4时,有 两个循环:1-2-4-8-7-5-1,长度为6;3-6-3,长度为2。答案就是所有循环长度的最小公倍数。显然算法时空复杂度均为O(n)(因为需要记录一个数是否已被某个循环经过)。


高效算法:
  1所在的循环长度就是答案。时间复杂度小于O(n),空间复杂度为O(1),编程复杂度也远低于原始算法。这个算法是建立在如下结论之上的:“1所在的循环长度是其它任一循环长度的倍数”,或者表述为“1回家时,其它任一数字也一定回了家”。


给出的证明:
  题目中的移动规则,其实就是每次把在第x个位置的数移动到位置x*2 mod (2*n+1)。这个式子是十分巧妙的,请用心领悟。由这个式子可以得出任一数字x在p步之后的位置:x*2^p mod (2*n+1)。假设1经过p步回了家,那么可得1*2^p mod (2*n+1)=1。由此可得对任一数字x,均有x*2^p mod (2*n+1)=x,即1回家时任一数字都回了家。 


代码:
#include<iostream>


using namespace std;


int n;
int main()
{
    while (cin>>n)
        {
            int i=1,t=0;
            while (i!=n+1)
                {
                    if (i<=n)
                        {
                            i*=2;
                            t++;
                            continue;
                        }
                    i=i-n;
                    i=i*2-1;
                    t++;
                }
            cout<<t+1<<endl;
        }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值