深入讲解音视频编码原理,H264码流详解——手写H264编码器

本文深入探讨了音视频编码原理,重点讲解了H264编码中的I帧、P帧和B帧。通过手写H264编码器的实现过程,详细阐述了运动预测编码、运动补偿以及P帧编码的关键步骤,展示了如何通过运动矢量找到最接近的宏块以降低数据量,实现高效压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

音视频高手课08-H264 I帧 P帧 B帧及手写H264编码器

1 三种帧的说明

1、I 帧:帧内编码帧,帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)

I 帧的特点:

  • a. 它是一个全帧压缩编码帧,它将全帧图像信息进行JPEG压缩编码及传输

  • b. 解码时仅用I 帧的数据就可重构完整图像

  • c. I 帧描述了图像背景和运动主体的详情

  • d. I 帧不需要参考其他画面而生成

  • e. I 帧是P帧和B帧的参考帧(其质量直接影响到同组中以后各帧的质量)

  • f. I 帧不需要考虑运动矢量

  • g. I 帧所占数据的信息量比较大

    P帧:前向预测编码帧。P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)

P帧的预测与重构:P帧是以 I 帧为参考帧,在 I 帧中找出P帧“某点”的预测值和运动矢量,取预测差值和运动矢量一起传送。在接收端根据运行矢量从 I 帧找出P帧“某点”的预测值并与差值相加以得到P帧“某点”样值,从而可得到完整的P帧。

P帧的特点:

  • a. P帧是 I 帧后面相隔1~2帧的编码帧

  • b. P帧采用运动补偿的方法传送它与前面的I或P帧的差值及运动矢量(预测误差)

  • c. 解码时必须将帧中的预测值与预测误差求和后才能重构完整的P帧图像

  • d. P帧属于前向预测的帧间编码。它只参考前面最靠近它的 I 帧或P帧

  • e. 由于P帧是参考帧,它可能造成解码错误的扩散

  • f. 由于是差值传送,P帧的压缩比较高

3、B帧:双向预测内插编码帧。B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况,但我这样说简单些),换言之,要解码B帧。不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。B帧压缩率高,但是解码时CPU会比较累。

B帧的预测与重构

​ B帧以前面的 I 或P帧和后面的P帧为参考帧,“找出”B帧“某点”的预测值和两个运动矢量,并取预测差值和运动矢量传送。接收端根据运动矢量在两个参考帧中“找出(算出)”预测值并与差值求和,得到B帧“某点”样值,从而可得到完整的B帧。

B帧的特点:

  • a. B帧是由前面的 I 或P帧和后面的P帧进行预测的

  • b. B帧传送的是它与前面的 I 或P帧和后面的P帧之间的预测误差及运动矢量

  • c. B帧是双向预测编码帧

  • d. B帧压缩比最高,因为它只反映并参考帧间运动主体的变化情况,预测比较准确

  • e. B帧不是参考帧,不会造成解码错误的扩散

注:I、B、P帧是根据压缩算法的需要,是人为定义的,他们都是实实在在的物理帧。
一般来说,帧的压缩率是7(跟JPG差不多),
P帧是20,B帧可以达到50.可见使用B帧能节省大量空间,
节省出来的空间可以用来保存多一些帧,这样在相同码率下,可以提供更好的画质。
1.2 压缩算法的说明

h264的压缩方法

  • 1、分组:把几帧图像分为一组(GOP,也就是一个序列),为防止运动变化,帧数不宜取多
  • 2、定义帧:将每组内各帧图像定义为三种类型,即 I 帧、B帧和P帧
  • 3、预测帧:以帧作为基础帧,以帧预测P帧,再由 I 帧和P帧预测B帧
  • 4、数据传输:最后将 I 帧数据与预测的差值信息进行存储和传输

帧内(Intraframe)压缩也称为空间压缩(Spatial compression)。当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。帧内一般采用有损压缩算法,由于帧内压缩是编码一个完整的图像,因此可以独立的解码、显示。帧内压缩一般达不到很高的压缩,跟编码jpeg差不多。

帧间(Interframe)压缩的原理是:相邻几帧的数据有很大的相关性,或者说前后两帧信息变化很小的特点,也即连续的视频及其相邻帧之间具有冗余信息,根据这一特性,压缩相邻帧之间的冗余量就可以进一步提高压缩量,减少压缩比。帧间压缩也称为时间压缩,它通过比较时间轴上不同帧之间的数据进行压缩。帧间压缩一般是无损的。帧差值(Frame differencing)算法是一种典型的时间压缩发,它通过比较本帧与相邻帧之间的差异,仅记录本帧与其相邻帧的差值,这样可以大大减少数据量。

顺便说下有损(Lossy)压缩和无损(Lossy less)压缩。无损压缩也即压缩前和解压缩后的数据完全一致。多数的无损压缩都采用RLE行程编码算法。有损压缩意味着解压缩后的数据与压缩前的数据不一致。在压缩的过程中要丢失一些人眼和耳朵所不敏感的图像或音频信息,而且丢失的信息不可恢复。几乎所有高压缩的算法都采用有损压缩,这样才能达到低数据率的目标。丢失的数据率与压缩比有关,压缩比越小,丢失的数据越多,解压缩后的效果一般越差。此外,某些有损压缩算法采用多次重复压缩的方式,这样还会引起额外的数据丢失。


2 手写H264编码器

要彻底理解视频编码原理,看书都是虚的,需要实际动手,实现一个简单的视频编码器:

知识准备:基本图像处理知识,信号的时域和频域问题,熟练掌握傅立叶正反变换,一维、二维傅立叶变换,以及其变种,dct变换,快速dct变换。

2.1.1 第一步:实现有损图像压缩和解压
参考 JPEG原理,将RGB->YUV,然后Y/U/V看成三张不同的图片,将其中一张图片分为 8x8的block进行 dct变换(可以直接进行二维dct变换,或者按一定顺序将8x8的二维数组整理成一个64字节的一维数组),还是得到一个8x8的整数频率数据。于是表示图像大轮廓的低频信号(人眼敏感的信号)集中在 8x8的左上角;表示图像细节的高频信号集中在右下角。

​ 接着将其量化,所谓量化,就是信号采样的步长,8x8的整数频率数据块,每个数据都要除以对应位置的步长,左上角相对重要的低频信号步长是1,也就是说0-255,是多少就是多少。而右下角是不太重要的高频信号,比如步长取10,那么这些位置的数据都要/10,实际解码的时候再将他们10恢复出来,这样经过编码的时候/10和解码的时候10,那么步长为10的信号1, 13, 25, 37就会变成规矩的:0, 10, 20, 30, 对小于步长10的部分我们直接丢弃了,因为高频不太重要。

经过量化以后,8x8的数据块左上角的数据由于步长小,都是比较离散的,而靠近右下角的高频数据,都比较统一,或者是一串0,因此图像大量的细节被我们丢弃了,这时候,我们用无损压缩方式,比如lzma2算法(jpeg是rle + huffman)将这64个byte压缩起来,由于后面高频数据步长大,做了除法以后,这些值都比较小,而且比较靠近,甚至右下部分都是一串0,十分便于压缩。

​ JPEG图像有个问题就是低码率时 block边界比较严重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值