知识概览
并查集主要解决两个问题:
1. 将两个集合合并
2. 询问两个元素是否在一个集合当中
上面两个操作的时间复杂度近乎O(1)。
并查集的基本原理:每个集合用一棵树表示。树根的编号就是整个集合的编号。每个节点存储它的父节点。p[x]表示x的父节点。
并查集有三个主要问题:
问题1:如何判断树根:if (p[x] == x)
问题2:如何求x的集合编号:while (p[x] != x) x = p[x];
问题3:如何合并两个集合:px是x的集合编号,py是y的集合编号,则p[px] = py
优化方式:
路径压缩、按秩合并
例题展示
题目链接
合并集合
https://www.acwing.com/problem/content/838/
代码
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int p[N];
int find(int x) // 返回x的祖宗节点 + 路径压缩
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) p[i] = i;
while (m--)
{
char op[2];
int a, b;
scanf("%s%d%d", op, &a, &b);
if (op[0] == 'M') p[find(a)] = find(b);
else
{
if (find(a) == find(b)) puts("Yes");
else puts("No");
}
}
return 0;
}
题目链接
连通块中点的数量
https://www.acwing.com/problem/content/839/
题解
并查集中需要维护集合中点的数量。
代码
#include <cstdio>
const int N = 100010;
int n, m;
int p[N], size[N];
int find(int x) // 返回x的祖宗节点 + 路径压缩
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
p[i] = i;
size[i] = 1;
}
while (m--)
{
char op[5];
int a, b;
scanf("%s", op);
if (op[0] == 'C')
{
scanf("%d%d", &a, &b);
if (find(a) == find(b)) continue;
size[find(b)] += size[find(a)];
p[find(a)] = find(b);
}
else if (op[1] == '1')
{
scanf("%d%d", &a, &b);
if (find(a) == find(b)) puts("Yes");
else puts("No");
}
else
{
scanf("%d", &a);
printf("%d\n", size[find(a)]);
}
}
return 0;
}
参考资料
- AcWing算法基础课