自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 资源 (14)
  • 问答 (4)
  • 收藏
  • 关注

原创 图表征学习与图预测

超大规模数据集类的创建在前面的学习中我们只接触了数据可全部储存于内存的数据集,这些数据集对应的数据集类在创建对象时就将所有数据都加载到内存。然而在一些应用场景中,数据集规模超级大,我们很难有足够大的内存完全存下所有数据。因此需要一个按需加载样本到内存的数据集类。在此上半节内容中,我们将学习为一个包含上千万个图样本的数据集构建一个数据集类。Dataset基类简介在PyG中,我们通过继承torch_geometric.data.Dataset基类来自定义一个按需加载样本到内存的数据集类。此基类与Torch

2021-07-08 22:55:01 445 2

原创 基于图神经网络的图表征学习的一般过程

基于图神经网络的图表征学习方法引言在此篇文章中我们将学习基于图神经网络的图表征学习方法,图表征学习要求根据节点属性、边和边的属性(如果有的话)生成一个向量作为图的表征,基于图表征我们可以做图的预测。基于图同构网络(Graph Isomorphism Network, GIN)的图表征网络是当前最经典的图表征学习网络,我们将以它为例,通过该网络的实现、项目实践和理论分析,三个层面来学习基于图神经网络的图表征学习方法。提出图同构网络的论文:How Powerful are Graph Neural Net

2021-07-04 11:35:19 315

原创 超大图上节点表征学习

超大图上的节点表征学习注:此节文章翻译并整理自提出Cluster-GCN的论文:Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Network引言图神经网络已经成功地应用于许多图节点或边的预测任务中,然而,在超大图上进行图神经网络的训练仍然具有挑战性。普通的基于SGD的图神经网络的训练方法,要么面临着随着图神经网络层数增加计算成本呈指数增长的问题,要么面临着保存整个图的信息和每一层每

2021-06-30 15:27:21 287

原创 节点表征学习与节点预测和边预测

数据完全存于内存的数据集类引言在上一节内容中,我们学习了基于图神经网络的节点表征学习方法,并用了现成的很小的数据集实现了节点分类任务。在此第6节的上半部分,我们将学习在PyG中如何自定义一个数据完全存于内存的数据集类。InMemoryDataset基类简介在PyG中,我们通过继承InMemoryDataset类来自定义一个数据可全部存储到内存的数据集类。class InMemoryDataset(root: Optional[str] = None, transform: Opti

2021-06-25 16:09:23 267

原创 节点表征学习与节点预测和边预测

基于图神经网络的节点表征学习引言在图节点预测或边预测任务中,需要先构造节点表征(representation),节点表征是图节点预测和边预测任务成功的关键。在此篇文章中,我们将学习如何基于图神经网络学习节点表征。在节点预测任务中,我们拥有一个图,图上有很多节点,部分节点的预测标签已知,部分节点的预测标签未知。我们的任务是根据节点的属性(可以是类别型、也可以是数值型)、边的信息、边的属性(如果有的话)、已知的节点预测标签,对未知标签的节点做预测。我们将以Cora数据集为例子进行说明,Cora是一个论文

2021-06-22 22:15:23 3212

原创 实现图神经网络的消息传递范式

消息传递图神经网络一、引言在开篇中我们介绍了,为节点生成节点表征(Node Representation)是图计算任务成功的关键,我们要利用神经网络来学习节点表征。消息传递范式是一种聚合邻接节点信息来更新中心节点信息的范式,它将卷积算子推广到了不规则数据领域,实现了图与神经网络的连接。消息传递范式因为简单、强大的特性,于是被人们广泛地使用。遵循消息传递范式的图神经网络被称为消息传递图神经网络。本节中,首先我们将学习图神经网络生成节点表征的范式–消息传递(Message Passing)范式。接着我

2021-06-18 16:55:05 889

原创 图论与程序中图的操作

图结构数据一、图的表示定义一(图):一个图被记为G={V,E}\mathcal{G}=\{\mathcal{V}, \mathcal{E}\}G={V,E},其中 V={v1,…,vN}\mathcal{V}=\left\{v_{1}, \ldots, v_{N}\right\}V={v1​,…,vN​}是数量为N=∣V∣N=|\mathcal{V}|N=∣V∣ 的结点的集合, E={e1,…,eM}\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}E={

2021-06-15 23:49:34 248

原创 异常检测介绍(5)

高维数据异常检测引言在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积)会以指数级别增长,使数据变得稀疏,这便是维度诅咒的难题。维度诅咒不止给异常检测带来了挑战,对距离的计算,聚类都带来了难题。例如基于邻近度的方法是在所有维度使用距离函数来定义局部性,但是,在高维空间中,所有点对的距离几乎都是相等的(距离集中),这使得一些基于距离的方法失效。在高维场景下,一个常用的方法是子空间方法。集成是子空间思想中常用的方法之一,可以有效提高数据挖掘算法精度。集成方法将多个算法或多个基检测器

2021-01-24 21:01:55 449 3

原创 异常检测介绍(4)

基于相似度的方法概述“异常” 通常是一个主观的判断,什么样的数据被认为是“异常"的,需要结合业务背景和环境来具体分析确定。实际上,数据通常嵌入在大量的噪声中,而我们所说的“异常值”通常指具有特定业务意义的那一类特殊的异常值。噪声可以视作特性较弱的异常值,没有被分析的价值。噪声和异常之间、正常数据和噪声之间的边界都是模糊的。异常值通常具有更高的离群程度分数值,同时也更具有可解释性。在普通的数据处理中,我们常常需要保留正常数据,而对噪声和异常值的特性则基本忽略。但在异常检测中,我们弱化了“噪声”和“正常

2021-01-21 19:00:20 314

原创 异常检测介绍(3)

线性模型引言真实数据集中不同维度的数据通常具有高度的相关性,这是因为不同的属性往往是由相同的基础过程以密切相关的方式产生的。在古典统计学中,这被称为——回归建模,一种参数化的相关性分析。一类相关性分析试图通过其他变量预测单独的属性值,另一类方法用一些潜在变量来代表整个数据。前者的代表是线性回归,后者一个典型的例子是主成分分析。本文将会用这两种典型的线性相关分析方法进行异常检测。需要明确的是,这里有两个重要的假设:假设一:近似线性相关假设。线性相关假设是使用两种模型进行异常检测的重要理论基础。假设

2021-01-17 21:53:48 377

原创 异常检测介绍(2)

基于统计学的方法概述统计学方法对数据的正常性做出假定。它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。即利用统计学方法建立一个模型,然后考虑对象有多大可能符合该模型。根据如何指定和学习模型,异常检测的统计学方法可以划分为两个主要类型:参数方法和非参数方法。参数方法假定正常的数据对象被一个以

2021-01-15 21:52:40 317

原创 异常检测介绍(1)

参考资料:[1] DataWhale材料[2] https://www.biaodianfu.com/sklearn-anomaly-detection.html[3] https://pyod.readthedocs.io/en/latest/example.html一、概述1、什么是异常检测异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行为差异大的数据。 识别如信用卡欺诈,工业生产异常,网络流⾥的异常(网络侵入)等问题,针对的是少数的事件。.

2021-01-12 16:03:56 732

corpus.rar

事件抽取 事件关系抽取 数据集 包含部分ACE 2005 Multilingual Training Corpus 和 Text Analysis Conference Knowledge Base Population (TAC KBP)的语料集

2019-12-14

深入浅出强化学习原理入门.rar

用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,覆盖了传统的强化学习基本方法和当前炙手可热的深度强化学习方法。从最基本的马尔科夫决策过程入手,将强化学习问题纳入到严谨的数学框架中,接着阐述了解决此类问题最基本的方法——动态规划方法,并从中总结出解决强化学习问题的基本思路:交互迭代策略评估和策略改善

2019-07-04

王道程序员求职宝典+算法笔记

选了大量知名企业的程序员笔试、面试题,重点突出、解答翔实

2019-04-24

百面机器学习算法+CNN BOOK

《百面机器学习算法》pdf高清带标签+《CNN BOOK》魏秀参

2019-04-18

统计自然语言处理(宗成庆 第二版)

统计自然语言处理 宗成庆 第二版 本书全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。 本书可作为高等院校计算机、信息技术等相关专业的高年级本科生或研究生的教材或参考书,也可供从事自然语言处理、数据挖掘和人工智能等研究的相关人员参考。

2018-03-01

Computer Systems: A Programmer's Perspective, 3rd Edition, PDF

Computer Systems: A Programmer's Perspective, 3rd Edition 深入了解计算机系统第三版 CS:APP 深入了解计算机系统第三版和第二版 英文原版PDF

2017-10-30

windows mac地址修改器

本软件可以修改电脑网卡的物理地址为任意地址,支持xp,vista,win7,win8

2015-03-11

WinRAR破解版无须注册

WinRAR 是一款功能强大的压缩包管理器,它是档案工具RAR 在 Windows 环境下的图形界面。该软件可用于备份数据,缩减电子邮件附件的大小,解压缩从 Internet 上下载的 RAR、ZIP及其它类型文件,并且可以新建 RAR 及 ZIP 格式等的压缩类文件。

2015-02-13

奇点临近(The Singularity Is Near: When Humans Transcend Biology)

奇点临近(The Singularity Is Near: When Humans Transcend Biology)是雷·库茨魏尔于的关于未来学的书籍。 “雷·库兹韦尔是我所知道的预测人工智能未来最权威的人。他的这本耐人寻味的书预测未来信息技术得到空前发展,将促使人类超越自身的生物极限——以我们无法想象的方式超越我们的生命。”   ——比尔·盖茨 人工智能作为21世纪科技发展的最新成就,深刻揭示了科技发展为人类社会带来的巨大影响。本书结合求解智能问题的数据结构以及实现的算法,把人工智能的应用程序应用于实际环境中,并从社会和哲学、心理学以及神经生理学角度对人工智能进行了独特的讨论。本书提供了一个崭新的视角,展示了以人工智能为代表的科技现象作为一种“奇点”思潮,揭示了其在世界范围内所产生的广泛影响。本书全书分为以下几大部分:第一部分人工智能,第二部分问题延伸,第三部分拓展人类思维,第四部分推理,第五部分通信、感知与行动,第六部分结论。本书既详细介绍了人工智能的基本概念、思想和算法,还描述了其各个研究方向最前沿的进展,同时收集整理了详实的历史文献与事件。 适合于不同层次和领域的研究人员及学生,是高等院校本科生和研究生人工智能课的课外读物,也是相关领域的科研与工程技术人员的参考书。

2014-12-10

vc++学生个人事务管理系统

visual C++/MFC/学生事务管理系统

2013-12-08

vc++ OpenGL图形程序

Visual C++/MFC/OpenGL 图形程序的开发

2013-12-08

vc++小型CAD系统

visual c++/MFC/开发/小型CAD系统源码/清华大学

2013-12-08

MFC五子棋c++

五子棋vc++MFCfivechess简单好玩的中国传统智力棋牌游戏

2013-12-08

c++语言版魂斗罗 可改命

加强版 if (lives_setting>9) lives_setting =1000;//(设置命的条数为1000) main.cpp中 int __stdcall WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { static char inifile[256]; int i=0; GetModuleFileName (NULL, inifile, sizeof (inifile)) ; strcpy (strrchr (inifile, '.') + 1, "ini") ; fullscreen = GetPrivateProfileInt("CONTRA", "FULLSCREEN",0, inifile); bossbgm = GetPrivateProfileInt("CONTRA", "BOSSBGM",0, inifile); lives_setting =GetPrivateProfileInt("CONTRA", "LIVES",3, inifile); if (lives_setting>9) lives_setting =1000; else if (lives_setting<=0) lives_setting =1; lives_setting--; fherr =fopen("error.txt", "w"); if(!initgame()){ if (fherr) fclose (fherr); return 1; }

2013-12-08

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除