自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 资源 (7)
  • 收藏
  • 关注

原创 工具使用+python+notebook+使用教程+网址

一、安装notebook的教程如何选择合适的版本:https://jupyter.readthedocs.io/en/latest/projects/content-projects.html#content-projects有了python后如何直接安装:Jupyter Documention 4.1:https://jupyter.readthedocs.io/en/latest/instal...

2018-04-12 15:28:07 2119

转载 论文阅读+YOLO

《YOLO:You only look Once:Unified,Real-Time Object Detection》一、解决什么问题?二、怎么解决的?1.基本的思想?1.端到端的训练和实时检测。2.YOLO将输入图像划分为S*S个网络,如果一个物体的中心落在某个网格内,则相应网格负责检测该物体。3.在训练和测试时,每个网络预测B个bboxs,每个bbox对应5个预测参数,即bbox中心点坐标(...

2018-04-09 18:12:36 2674 1

转载 C++ + #include<memory> +智能指针

先转过来,稍后再整理!!=========================auto_ptr====================1 auto_ptr2 unique_ptr 1 auto_ptr 一、解决什么问题?C++的auto_ptr所做的事情,就是动态分配对象以及当对象不再需要时自动执行清理。二怎么解决?1.基本思想?2.规则?使用std::auto_ptr,要#include &lt;m...

2018-04-08 21:53:48 3540

原创 笔试+查找算法

===========查找算法总结=============一、解决什么问题?这类问题的规律是什么?如何在大量的信息中找到给定的信息元素?二、有哪些解决方法?  顺序查找、二分查找、插值查找、斐波那契查找、树表查找、分块查找、哈希查找三、查找算法的选择和比较?===============详细介绍================一、顺序查找(线性查找)1.解决什么问题?查找+数据的存储结构是线性表...

2018-04-08 10:37:46 711

转载 code+定义赋值运算符函数

一、要点1.把返回值的类型声明为该类型的引用。2.在函数结束前返回实例自身的引用(即*this)3.把传入的 参数的类型声明为常量引用。4.释放实例自身已有的内存。5.判断传入的参数和当前的实例(*this)是不是同一个实例。二、实现#include &lt;iostream&gt;#include &lt;cstdlib&gt;#include &lt;cstring&gt;using n...

2018-04-07 15:16:49 523

原创 笔试+STL+库函数

一、常见的库函数1.笔试时常用的STL库函数。向量容器(vector)、列表容器(list)和双端队列容器(deque)类分别位于&lt;vector&gt;、&lt;list&gt;和&lt;deque&gt;中。 集合容器(set)和多重集合容器(multiset)位于&lt;set&gt;中。 映射容器(map)和多重映射容器(multimap)位于&lt;map&gt;中。 ...

2018-04-07 15:09:08 370

原创 基础+C++ + include介绍

一、include解决什么问题?二、如何使用include解决问题?1.解决的方法有几种?include的两种不同写法,#include&lt;*.h&gt;和#include"*.h"2.具体介绍一下使用的方法?(1).当采用的是旧的编程形式时?(这种情况在c语言编写的程序中比较常见)使用#include&lt;*.h&gt;。(2).当新的标准头文件时?(不论是c语言还是c++语言+这种情况在...

2018-04-07 14:23:17 660

转载 面试+排序算法

一张各种排序算法的对比:1、选择排序(Selection Sort)   选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。 2、 插入排序 (Insertion Sort)   插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i...

2018-04-06 15:47:14 177

转载 C++ STL 库函数大全

/////////////////////////////////////////点击打开链接 C99 增加#include &lt;complex.h&gt;   //复数处理#include &lt;fenv.h&gt;    //浮点环境#include &lt;inttypes.h&gt;  //整数格式转换#include &lt;stdbool.h&gt;   //布尔环境#inclu...

2018-04-04 20:09:57 4179 1

转载 STL+hash_map+map

1。目录map简介map的功能使用map在map中插入元素查找并获取map中的元素从map中删除元素2。map简介map是一类关联式容器。它的特点是增加和删除节点对迭代器的影响很小,除了那个操作节点,对其他的节点都没有什么影响。对于迭代器来说,可以修改实值,而不能修改key。3。map的功能自动建立Key - value的对应。key 和 value可以是任意你需要的类型。根据key值快速查找记录...

2018-04-04 20:08:11 147

转载 找工作+笔试+输入输出的处理

==============================(1)==================================一、解决什么问题概括:输入不说明有多少个Input Block,以EOF为结束标志。描述:Example1:Calculate A + B .Input:Each line will contain two integers A and B . Process to...

2018-04-04 20:06:55 779

转载 机器学习+随机森林

随机森林算法(RandomForest,简称RF)一、解决的问题二、解决方法的框架/流程1.基本思想:RF在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。(即先从节点的属性集合M中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分,一般k远小于M,取k= )。2、基本的流程:a. 从训练数据中选取n个数据作为训练数据输入,有...

2018-04-04 10:20:33 421 1

转载 面试+机器学习题目

一、CNN层级结构:输入层-&gt;卷积层-&gt;激活层-&gt;卷积层-&gt;激活层····数据输入层(数据预处理):三种方法:去均值(即0均值化,CNN常用,训练集所有像素值减去均值,把输入数据各个维度中心化到0,测试集也减相同的均值);归一化(幅度归一化到同样的范围);PCA/白化(降维,白化是对数据每个特征轴上的幅度归一化)。去均值的目的:(1)数据有过大的均值可能导致参数的梯度过大,...

2018-04-03 16:51:09 296

转载 图像处理+边缘检测算法

一、边缘检测算子类别      常见边缘检测算子:Roberts 、Sobel 、Prewitt、Laplacian、Log/Marr、Canny、Kirsch、Nevitia二、一阶微分算子:Roberts 、Sobel 、Prewitt        Robert算子是第一个边缘检测算子,提出者Lawrence Roberts in 1963。        Sobel边缘算子,当年作者并没有...

2018-04-03 16:41:15 21114 1

转载 梯度下降算法

参考文献:https://blog.csdn.net/tsyccnh/article/details/76270707

2018-04-03 16:09:38 116

转载 机器学习+集成学习

要求:要会推导bagging方法:看周志华教授的西瓜书 boosting方法:看李航的蓝书,特别的对于GBDT,这篇文章写的很清晰,推导相对简单 stacking方法:没有特别好的讲解,都看看吧,这篇还行 决策树:cart树是最常问的,详见李航蓝书,从推导到剪枝都要会==============================集成学习==========================...

2018-04-03 15:31:55 598

转载 机器学习+逻辑斯蒂回归算法

要求:要会推导参考文献:https://zhuanlan.zhihu.com/p/34325602

2018-04-03 15:28:52 367

原创 数据结构+初步认识+常见术语

数据:定义:数据是描述客观事物的符号,是计算机中可以操作的对象,是能够被计算机识别,并输入给计算机处理的符号集合。外延:数据可以是数值类型(比如:整型、实型),也可以是非数值类型(比如:声音、符号、图像)。——看图说话。数据    数值类型非数值类型 整型、实型声音、符号、图像数据性质:——(1)对数据的一些常见的描述(1)数据就是符号,并且是满足两个前提的符号。第一、可以输入到计算机中。第二、能...

2018-04-02 17:21:13 470

原创 机器学习-贝叶斯算法

贝叶斯算法和最大似然法的区别1.最大似然法是根据样本来计算参数。十分依赖训练的样本。2.贝叶斯依赖于先验概率。例子:连续抛两次硬币,都是正面。则贝叶斯猜测第三次出现正面的概率是1/2,而最大似然法是猜测第三次出现正面的概率是1....

2018-04-02 16:44:25 181

原创 论文阅读-RCNN

《Regions with CNN features》-2014代码和论文地址:https://github.com/rbgirshick/rcnn一、解决什么问题?1.属于目标检测领域。2.二、怎么解决问题?1、基本的思想大样本下有监督训练+小样本微调的方式解决小样本难以训练甚至过拟合问题。2、大概的流程(一)训练阶段:概述:比较详细的介绍:1. 使用SS提取proposal。      对训练...

2018-04-02 16:44:03 1061

转载 论文阅读+SSP net+特征金字塔网络

《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》-20141.解决什么问题    在R-CNN出来之后,在使用cnn来进行目标检测时,如果网络的结构确定了,那么需要输入一张固定大小的图片,比如224*224,32*32,96*96等。这样对于我们希望检测各种大小的图片的时候,需要经过裁剪,...

2018-04-02 16:43:54 3989 1

转载 论文阅读+Fast-RCNN

《Fast R-CNN:Fast Region-based Convolutional Networks for object detection》—2015源码:https://github.com/rbgirshick/fast-rcnn这篇论文依据的是RCNN方法,在使用RCNN的过程中遇到了一些问题,所以有了这篇文章。以前看到《基于XX方法的什么》不是很明白在讲什么,现在知道了。这种表述的...

2018-04-02 16:43:44 1099

转载 论文阅读+Faster RCNN

《《Faster R-CNN: Towards Real-Time ObjectDetection with Region Proposal Networks》-201X一、解决什么问题      1. 能不能快速的生成候选区域,不使用ss算法得到object proposal?(为啥还要用SS!!!)      2. 能不能减少参数的数量,或者说能不能共用一些参数?二、解决方案整个网络可以看作由...

2018-04-02 16:43:35 941

转载 论文阅读+代价函数+激活函数

=================第一部分 代价函数====================代价函数=损失函数    在机器学习中的每一种算法中,训练模型的过程就是优化代价函数的过程。代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。一、什么是代价函数假设有训练样本(x, y),模型h,参数θ。h(θ) = θTx(θT表示θ的转置)。(1)概况...

2018-04-02 16:43:21 3871

转载 机器学习+过拟合和欠拟合+方差和偏差

一、什么是过拟合?(高方差)+为什么会产生过拟合?+怎么解决过拟合?1.过拟合:就是训练时的结果很好,但是在预测时结果不好的情况。2.产生过拟合的原因:(1)   模型的复杂度太高。比如:网络太深,(2)过多的变量(特征)(3)训练数据非常少。3.如何解决过拟合?避免过拟合的方法有很多:(1)尽量减少特征的数量、(2)early stopping、(3)数据集扩增、(4)dropout、(5)正则...

2018-04-02 16:43:08 8721 1

原创 文献阅读+L1正则和L2正则+softmaxL1正则

导入:一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。两者的比较:正则化L1正则L2正则形式不同:  前面是否有系数有系数有系数一、解决什么问题?(作用?应用场景?)通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(t...

2018-04-02 16:40:47 1288

数字图像处理 matlab版

基础的图像处理内容,包含部分图像分析的知识。比较适合初学者进行学习。不建议高级人群使用。基础的图像处理内容,包含部分图像分析的知识。比较适合初学者进行学习。不建议高级人群使用。

2017-09-26

《21天实战caffe》

caffe 中文初级装备,不建议熟练的同学使用。caffe 中文初级装备,不建议熟练的同学使用。caffe 中文初级装备,不建议熟练的同学使用。

2017-09-26

Linux内核设计与实现

书本不是很厚,是一本轻量级的参考书,但是翻译的质量还行,适合想要了解Linux内核的用户。

2016-09-20

C How to Program 7th(1)

确实值得一看的书籍,不过是英文版。由于要下载的大小小于60M,所以分为了5部分,这是第一部分。C How to Program 7th(1)

2015-05-27

代码阅读方法与实践

这是一本介绍代码阅读方法适合初级编程人员阅读的文档

2015-05-27

robotium-solo-5.3.1.jar

Android测试软件,可支持有无源码的白盒和黑盒测试。

2015-03-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除