最优矩阵链乘

文章讨论了矩阵连乘积的最优计算次序问题,通过动态规划的方法找到计算矩阵链乘积所需的最小乘法次数。介绍了动态规划的状态转移方程,并提供了递归和非递归的解决方案,强调了空间优化的重要性。
摘要由CSDN通过智能技术生成

在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。

由公式知计算C=AB总共需要pqr次的数乘。

为了说明在计算矩阵连乘积时加括号方式对整个计算量的影响,我们来看一个计算3个矩阵{A1,A2,A3}的连乘积的例子。设这3个矩阵的维数分别为10×100,100×5和5×50。若按第一种加括号方式((A1A2)A3)来计算,总共需要10×100×5+10×5×50=7500次的数乘。若按第二种加括号方式(A1(A2A3))来计算,则需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量是第一种加括号方式的计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大影响。

于是,人们自然会提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,An}(其中Ai的维数为pi-1×pi ,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…An的一个计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。

Input

有若干种案例,每种两行,第一行是一个非负整数n表示矩阵的个数,n=0表示结束。接着有n行,每行两个正整数,表示矩阵的维数。

Ouput

对应输出最小的乘法次数。


Sample Input
 
 
 
  1.  
  2. 3
  3. 10 100
  4. 100 5
  5. 5 50
  6. 6
  7. 30 35
  8. 35 15
  9. 15 5
  10. 5 10
  11. 10 20
  12. 20 25
  13. 0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值