the max common divisor

the max common divisor:

int CMaxDivisorDlg::Compute(int a, int b){
    int max,min;
    max = a > b ? a : b;
    min = a + b - max;
    int temp;
    while( min ){
        temp = min;
        min = max % min;
        max = temp;
    }
    return max;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是 YOLOv7 的 common.py 源码: ```python import math import torch.nn.functional as F import torch.nn as nn import torch def make_divisible(x, divisor): # Returns x evenly divisible by divisor return math.ceil(x / divisor) * divisor def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] return p class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, stride=s, padding=autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.Hardswish() if act else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 self.identity = nn.Identity() if self.add else None def forward(self, x): return self.identity(x) + self.cv2(self.cv1(x)) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class DWConv(nn.Module): # Depthwise convolution def __init__(self, c1, c2, k=1, s=1, p=None): super(DWConv, self).__init__() self.conv = nn.Conv2d(c1, c1, k, stride=s, padding=autopad(k, p), groups=c1, bias=False) self.bn = nn.BatchNorm2d(c1) self.act = nn.Hardswish() self.project = nn.Conv2d(c1, c2, 1, bias=False) self.bn2 = nn.BatchNorm2d(c2) self.act2 = nn.Hardswish() def forward(self, x): return self.act2(self.bn2(self.project(self.act(self.bn(self.conv(x)))))) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class Detect(nn.Module): # Detect layer def __init__(self, nc, anchors): super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.na = len(anchors) # number of anchors self.anchors = torch.tensor(anchors).float().view(self.na, -1) self.anchors /= self.anchors.sum(1).view(self.na, 1) # normalized anchors self.register_buffer("anchor_grid", self.anchors.clone().view(1, -1, 1, 1)) self.m = nn.Conv2d(self.no * self.na, self.no * self.na, 1) # prediction conv def forward(self, x): # x(bs,255,h,w) -> p(bs,3,85,h,w) bs, _, ny, nx = x.shape device, dtype = x.device, x.dtype stride = self.anchor_grid.device / torch.tensor([nx, ny])[None, :, None, None].to(device) grid = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) y = torch.stack(grid, 2).to(device).float() x = (x.sigmoid() * 2. - 0.5) * stride # x(?,255,?,?) --sig--> x(?,255,?,?) --*2-0.5--> x(?,255,?,?) --*stride--> x(?,255,?,?) y = (y + 0.5) * stride # y(?,2,?,?) --+0.5--> y(?,2,?,?) --*stride--> y(?,2,?,?) xy = torch.stack([x, y], 2).view(bs, 2, self.na * ny * nx).permute(0, 2, 1).contiguous().view(bs, self.na * ny * nx, 2) x = self.m(x.flatten(2).permute(0, 2, 1)).view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # x(bs,na,ny,nx,na) --view--> x(bs,na,ny,nx,no) --permute--> x(bs,na,ny,nx,no) if not self.training: x[..., 4:] = x[..., 4:].sigmoid() return x else: # train return x, xy, self.anchor_grid.repeat(bs, 1, ny, nx) class Model(nn.Module): # YOLOv7 model https://github.com/WongKinYiu/yolov7 def __init__(self, nc=80, anchors=((10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)), ch=[256, 512, 1024, 2048], depth=0.33): super(Model, self).__init__() assert depth in [0.33, 0.67, 1.0] self.depth = depth # model depth multiplier self.grid = [torch.zeros(1)] * 5 # init grid self.stride = torch.tensor([8., 16., 32., 64., 128.]) self.create_backbone(ch) self.create_neck() self.create_head(nc, anchors) def forward(self, x): z = [] for i in range(5): x = self.backbone[i](x) z.append(x) x = self.neck(z) return self.head(x) def create_backbone(self, ch): # darknet backbone self.backbone = nn.ModuleList([Focus(3, ch[0], 3), Conv(ch[0], ch[1], 3, 2), Bottleneck(ch[1], ch[2]), Conv(ch[2], ch[3], 3, 2), Bottleneck(ch[3], ch[4]), Conv(ch[4], ch[5], 3, 2), SPP(ch[5], ch[5]), Bottleneck(ch[5], ch[6]), Conv(ch[6], ch[7], 1)]) c2 = make_divisible(ch[7] * self.depth) # ch_last self.backbone.append(Bottleneck(ch[7], c2, False)) self.out_channels = [c2, ch[4], ch[2], ch[0]] def create_neck(self): # FPN-like attentional output self.neck = nn.Sequential( Concat(), Conv(self.out_channels[0], self.out_channels[0], 1), DWConv(self.out_channels[0], self.out_channels[1], 3, s=2), DWConv(self.out_channels[1], self.out_channels[2], 3, s=2), DWConv(self.out_channels[2], self.out_channels[3], 3, s=2), SPP(self.out_channels[3], self.out_channels[3]), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), ) def create_head(self, nc, anchors): # detection head self.head = nn.Sequential( DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), DWConv(self.out_channels[3], self.out_channels[3], 3, dilation=3), Concat(), Conv(self.out_channels[3] * 4, self.out_channels[3], 1), nn.Conv2d(self.out_channels[3], len(anchors) * (nc + 5), 1, bias=True), Detect(nc, anchors)) def attempt_load(weights, map_location=None, inplace=True): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a if isinstance(weights, (list, tuple)): # Load a list of models (ensemble) ensemble = nn.ModuleList() for w in weights: model = Model() model.to(next(w.parameters()).device) try: ckpt = torch.load(w, map_location=map_location) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load print(f"Transferred {len(state_dict)} from {w}") except: print(f"Error loading {w}") ensemble.append(model.eval()) return ensemble else: # Load a single model model = Model() model.to(next(weights.parameters()).device) try: ckpt = torch.load(weights, map_location=map_location) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load print(f"Transferred {len(state_dict)} from {weights}") except: print(f"Error loading {weights}") return model.eval() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值