【Faster Rcnn 训练自己的数据】-安全帽检测

一、下载项目代码

git clone https://gitee.com/yunyao01/tf-faster-rcnn.git

二、根据不同类型的显卡设置Architecture

cd tf-faster-rcnn/lib
# Change the GPU architecture (-arch) if necessary
vim setup.py   #修改第130行
GPU modelArchitecture
TitanX (Maxwell/Pascal)sm_52
GTX 960Msm_50
GTX 1080 (Ti)sm_61
GTX 2080 (Ti)sm_75
Grid K520 (AWS g2.2xlarge)sm_30
Tesla K80 (AWS p2.xlarge)sm_37

三、下载预训练模型

3.1 VGG16

mkdir -p data/imagenet_weights
cd data/imagenet_weights
wget -v http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
tar -xzvf vgg_16_2016_08_28.tar.gz
mv vgg_16.ckpt vgg16.ckpt
cd ../..   

3.2 Resnet101

mkdir -p data/imagenet_weights
cd data/imagenet_weights
wget -v http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz
tar -xzvf resnet_v1_101_2016_08_28.tar.gz
mv resnet_v1_101.ckpt res101.ckpt
cd ../..

四、自己训练数据的准备(以安全帽数据集为例)

4.1 使用labelImg标注自己的图像数据,生成xml文件

数据存放结构如下,当需要换成自己的数据集时,只要替换JPEGImages和Annotations里的文件.

4.2 训练集、验证集、测试集生成

运行以下代码:

cd data/VOCdevkit2007/voc2007/
python data_prepare.py  #注意:可根据情况修改代码里的训练集比例

运行结束后,会在ImageSets文件夹下生成4个txt文件,每个文件代表意思如下:

五、代码修改

5.1 修改 lib/datatsets/pascal_voc.py

替换成自己的检测类别:

5.2 修改 lib/datasets/imdb.py

5.3 修改 tools/demo.py

六、参数调整

6.1 experiments/scripts/train_faster_rcnn.sh

修改训练迭代次数

七、训练运行

./experiments/scripts/train_faster_rcnn.sh 0 pascal_voc vgg16

八、模型测试

九、模型格式转换(略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值