Adrianna的专栏

Stay hungry, stay foolish.

【tensorflow学习】最简单的GAN 实现

1.GAN基本思想生成式对抗网络GAN (Generative adversarial networks) 是Goodfellow 等在2014 年提出的一种生成式模型。GAN 的核心思想来源于博弈论的纳什均衡。它设定参与游戏双方分别为一个生成器(Generator)和一个判别器(Discrimi...

2017-07-13 14:00:50

阅读数 17536

评论数 31

用Flagcounter记录CSDN博客访客

Flagcounter官网网址:http://s11.flagcounter.com/more/vULQ/ 这是我第一个使用的网站流量统计工具,特色是可以统计每天博客的访问次数,将访问者的IP进行统计并以国旗的方式进行可视化 2.1.1 如何使用 进入官网,点击Create a FREE Flag...

2019-04-28 20:09:49

阅读数 33

评论数 0

安装tensorflow报错Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None))

网络问题,解决方案很简单,不用官方源改用阿里镜像。命令如下: pip install tensorflow -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com 默认是cpu版本,如果想安装gpu版...

2019-01-23 10:26:39

阅读数 642

评论数 0

Linux 如何挂载NAS盘

linux下需要将nas盘挂在到系统中; 方法: 首先创建一个挂载目录: mkdir /mnt/nas 挂载目录: mount -o username=flt,password=a^6r9SDy,iocharset=utf8 //192.168.2.90/产品...

2018-06-29 10:08:54

阅读数 1953

评论数 0

matlab resample 函数报错:Error using ==> upfirdn

报错: Error using ==> upfirdn at 82 The product of the downsample factor Q and the upsample factor P must be less than 2^31. 原因是resample的两个参数太...

2018-04-08 23:07:47

阅读数 431

评论数 0

tensorflow代码旧版本0.x自动更新升级到1.0

Reference: https://www.tensorflow.org/install/migration tensorflow 更新到1.0之后,0.n版本不兼容,除了手动更改代码之外,tensorflow官方还提供了自动更新的脚本。 下载链接:https://github.com/t...

2018-01-18 15:57:05

阅读数 937

评论数 0

Ubuntu 更改文件夹及子文件夹权限

Linux系统下如何修改文档及文件夹(含子文件夹)权限,我们来看一下。 一 介绍:可以使用命令chmod来为文件或目录赋予权限。Linux/Unix 的档案存取权限分为三级 : 档案拥有者、群组、其他。利用 chmod 可以藉以控制档案如何被他人所存取 二 应用:想要每个人都有读和写以及执行的权限...

2018-01-18 14:19:20

阅读数 1821

评论数 0

【tensorflow 学习】tf.split()和tf.squeeze()

split( value, num_or_size_splits, axis=0, num=None, name='split' )输入: value: 输入的tensor num_or_size_splits: 如果是个整数n,就将输入的tensor分...

2018-01-15 22:06:16

阅读数 10474

评论数 3

【tensorflow 学习】Session.run()和Tensor.eval()的区别

如果你有一个Tensor t,在使用t.eval()时,等价于:tf.get_default_session().run(t). 举例:t = tf.constant(42.0) sess = tf.Session() with sess.as_default(): # or with se...

2017-12-20 16:45:59

阅读数 818

评论数 0

【tensorflow 学习】 gpu使用

由于tensorflow默认抢占服务器所有GPU显存,只允许一个小内存的程序也会占用所有GPU资源。下面提出使用GPU运行tensorflow的几点建议:1.在运行之前先查看GPU的使用情况:$ nvidia-smi # 查看GPU此时的使用情况或者$ nvidia-smi -l # 实时返回GP...

2017-12-01 11:24:58

阅读数 4175

评论数 2

tensorflow 报错 libcusolver.so.8.0: cannot open shared object file: No such file or directory

检查LD_LIBRARY_PATH echo $LD_LIBRARY_PATH /usr/local/cuda-8.0/lib64发现libcusolver.so.8.0是在cuda-8.0/lib64目录的。 执行以下命令解决问题:sudo ldconfig /usr/local/cuda-8....

2017-11-30 13:46:04

阅读数 4293

评论数 0

tensorflow 报错 InternalError: Blas SGEMM launch failed

报错的原因是有其他的python进程在使用GPU,可以把其他进程关掉,或者在代码中加入:if 'session' in locals() and session is not None: print('Close interactive session') session.clos...

2017-11-17 14:47:30

阅读数 4943

评论数 0

【deeplearning.ai笔记第二课】2.4 batch normalization

1. batch normalization介绍批标准化(batch normalization) 是优化深度神经网络中最激动人心的最新创新之一。实际上它并不是一个优化算法,而是一个自适应的重参数化的方法,试图解决训练非常深的模型的困难。说的通俗点,实际上就是BN就是在对每一个隐藏层的输出ZiZ...

2017-11-16 18:02:16

阅读数 303

评论数 0

【tensorflow 学习】tf.get_variable()和tf.Variable()的区别

1. tf.Variable()W = tf.Variable(<initial-value>, name=<optional-name>)用于生成一个初始值为initial-value的变量。必须指定初始化值2.tf.get_variable() W = tf.get_v...

2017-11-14 19:54:55

阅读数 22621

评论数 5

【deeplearning.ai笔记第二课】2.3 学习率衰减(learning rate decay),局部极小值和鞍点

1. 学习率衰减(learning rate decay) 在训练模型的时候,通常会遇到这种情况:我们平衡模型的训练速度和损失(loss)后选择了相对合适的学习率(learning rate),但是训练集的损失下降到一定的程度后就不在下降了,比如training loss一直在0.7和0.9之间来...

2017-11-03 14:55:57

阅读数 765

评论数 0

【deeplearning.ai笔记第二课】2.2 优化算法(动量梯度下降,RMSprop,adam)

先上总结:1. 指数加权平均是一种 减少数据波动的方法。简单来说就是每个点的值都是前几个点和当前点的加权平均。公式如下: beta的值越大,数据越平稳。但是beta的值过大会使数据有一种“滞后”的感觉,如图中的绿线。1.1 理解为什么叫“指数”加权平均呢?因为根据公式,我们可以推导出以下的式子:...

2017-11-03 10:27:56

阅读数 7948

评论数 0

【deeplearning.ai笔记第二课】2.1 随机梯度下降,批量梯度下降和小批量梯度下降

批量梯度下降 (batch gradient descent) 每次梯度更新时,计算所有m个样本的梯度做梯度下降 小批量梯度下降 (mini-batch gradient descent) 每次梯度更新,计算n(n<m)(n<m)个样本的梯度做梯度下降 随机梯度下降(stoc...

2017-11-02 21:51:51

阅读数 462

评论数 0

【deeplearning.ai笔记第二课】1.4 正则化,权重初始化和输入归一化

正则化能减少过拟合,那么有哪些方法呢?我们来看一下:1.1 cost function加上正则项 L2 regularization即在 cost function 加上 L2 norm: ∑θ2​\sum\theta^2​L1 regularization即在 cost function 加上...

2017-10-19 11:27:33

阅读数 1459

评论数 0

【deeplearning.ai笔记第二课】1.3 机器学习基本方法(Basic recipe for machine learning)

在建立好模型后,我们通过训练测试得到最初的train error,valid error,test error,那么接下来应该怎么调整模型得到最优的模型呢? 可以归纳为以下流程图:

2017-10-19 11:27:32

阅读数 282

评论数 0

【deeplearning.ai笔记第二课】1.2 欠拟合和过拟合(bias variance)

偏差和方差(bias variance)很好理解,左图是high bias(高偏差),即欠拟合,右图是high variance(高方差),即过拟合。我们追求的是中间图,low bias AND low variance。注意的是并不是 高方差就一定低偏差,有可能既高方差又高偏差。怎么理解呢?看下...

2017-10-19 11:09:16

阅读数 718

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭