在数学中,格林函数是一种用来解有初始条件或边界条件的非齐次微分方程的函数。在物理学的多体理论中,格林函数常常指各种关联函数,有时并不符合数学上的定义。
从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法。而点源产生的场就叫做格林函数。
在数学物理方法中,格林函数法是求解非齐次方程定解问题的重要方法。格林函数法的基本特点是借助单位脉冲δ函数的抽样性质,把方程的解表示为包含格林函数的积分形式。这样,求方程的定解就转化为求格林函数的问题,所谓格林函数,实质上就是一个电源所产生的的场。为了获得一个分布源所产生的的场,可以先计算作为分布源单元的点源的场,然后再把它们叠加起来。