Matlab归一化方法

本文介绍了Matlab中两种常用的数据归一化方法:标准归一化和最大最小归一化。标准归一化通过mapstd函数实现,使数据分布的均值为0,标准差为1;最大最小归一化则通过mapminmax函数,将数据线性变换到[0, 1]区间。对于数据稳定的情况,推荐使用归一化;而存在异常值和噪音时,标准化能有效降低极端值的影响。" 88902001,6815734,Spark报错:AnalysisException: Path不存在问题解决,"['Spark开发', 'Hadoop', '大数据处理']
摘要由CSDN通过智能技术生成

1,标准归一化。 

  将原始数据集归一化为均值为0、方差1的数据集,归一化公式如下: 

                                          x2=(x-μ)/δ

  其中μ为所有样本数据的均值,δ为所有样本数据的标准差。

 这种方式要求原始数据集的分布近似为正态(高斯)分布。否则归一化的效果很差。

    Matlab中使用mapstd函数:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值